Long-Term Effects of CO, Enrichment on Plant Genome and Cell Size.
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/ ABSTRACT \

A major unanswered question in plant biology, ecology, and conservation
centers on 1dentifying the structural and functional characteristics of plants
that ultimately determine species and community responses to
environmental change. Of particular importance is the response of
individual plants and communities to long term enrichment of atmospheric
carbon dioxide (CO,). In general, plant species respond to increased CO,
by building leaves with fewer, large stomata and decreased overall surface
conductance. However, the underlying cellular mechanisms for these
observed changes 1s poorly understood, as are the larger scale effects on
plant species distributions and community dynamics. Previous research
suggests coordinated changes in cell size and genome size can occur in
response to changes in atmospheric CO,. Together these changes result in
the down regulation of maximum potential leaf surface conductance to
CO, and water vapor. Here we evaluated the influence of long-term
atmospheric CO, enrichment on a native California grassland at Stanford
University, conducted in collaboration with the Jasper Ridge Global
Change Experiment. Plant samples were collected and analyzed from both
experimental plots with sustained elevated CO, for 18 years and control

/ BACKGROUND (CONTINUED) \

It 1s our objective to see whether this intriguing trend uncovered by
Franks et al. (2012) on genome size and stomatal characteristics under
increased CO, occurs on a much larger, longer scale within a native
habitat. Overall plant community composition changes will also be
examined on a genomic basis when exposed to long-term elevated CO,.

METHODS

Stanford University’s Jasper Ridge Global Change Experiment (JRGCE)
has had continuous elevated CO, from ambient (~370 ppm) to enriched
CO, (at approximately twice the ambient level, or 700 ppm) in circular
plots via a loop of emitters surrounding each plot, using mini-FACE (free
air carbon dioxide enrichment) technology for 18 years. There are 8 plots
with enriched CO, and 8 plots with no added CO, (controls). Overall this
grassland ecosystem 1s dominated by annual grasses, but 1t also includes
perennial grasses and many herbaceous forbs of both annual and perennial
life strategies.

/ METHODS (CONTINUED) \

Specific Aim 2 Determine the extent to which individual plant species’
guard cell sizes change when subjected to long-term increased CO,. Guard
cell width and length of the same species sampled for genome size that are
co-occurring on experimental and control plots will be measured. First
using dental putty to make an impression of the leaf surface, then using a
Nikon Eclipse 801 microscope and QCapture Pro software to examine the
impressions. Measuring guard cell size 1s important because species with a
larger genome possess a large nucleus and by extension large guard cells,
which leads to lower stomatal densities and lower rates of stomatal
conductance. Lower stomatal conductance 1s favored under CO, rich
environments.

RESULTS

/ RESULTS (CONTINUED) \
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chamber conditions (as compared to natural field conditions), it is difficult
for these findings to be generalized and used to inform policymakers for
real world climate change solutions. But if the proposed relationship
between plant genome size and enriched CO, 1s substantiated on a longer
time scale and under natural field conditions, the impacts could be
significant and wide reaching.
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control plots using flow cytometry, the most widely accepted method for
quantifying genome size. Plants with known genome sizes were used,
seeds provided generously from Dolezel (Dolezel et al. 2007), grown in
San Francisco State University’s climate controlled greenhouses as

genome size standards. Data interpretation was performed on De Novo
FCS Express.

Ambient Elevated

Genome size (pg) of Avena barbata as influenced by CO,
environment, ambient versus elevated CO, (ambient x2)
treatments. Mean and standard error shown.
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