Survival in a Drier World: A Study of Rapid Adaptation in Response to Drought in the Sierra Nevada Endemic Forb, *Erythranthe laciniatus*
Or: What to Expect When You’re Expecting Climate Change
Pennington, L. K., Dickman, E., Sexton, J.
University of California, Merced

CLIMATE CHANGE: How will native plant populations respond?
- The Sierra Nevada are a biological hotspot, home to at least 7,000 vascular plant species, with 400 of those endemic (Ingram and Kocher 2015)
- A warmer, drier climate with higher incidence of climate anomalies is predicted for California
- Little is known about how plants will respond to rapidly changing climatic conditions

THE RESURRECTION APPROACH: Measuring response to extreme drought
- Resurrection experiments (Franks, Hamann, and Weis 2017) provide a framework to quantify change over time
- To determine how plants responded to the historic 2012-2014 drought, seeds of *Erythranthe laciniata* produced before and during the drought were grown out in common conditions.

STUDY QUESTIONS:
1. Are the observed phenological changes conserved in a second generation growout?
2. Do responses vary between populations?

METHODS: Second generation growout
- Second generation of resurrection experiment
- Nine populations across the *E. laciniata* range
- Pre-drought plants from 2005-2008
- Drought plants from 2014
- 304 families planted, 94% germinated
- Plants grown in growth chambers, a common environment
- Trays checked daily for phenology: days to emergence, budding, first flower, first fruit, and senescence

RESULTS
Days to emergence:
- Drought generation plants emerged 1.8 days earlier than pre-drought plants
- Emergence rates differed between populations (p = 0.003), but not between generations

Days to first flower:
- Drought generation plants flowered one day earlier than pre-drought plants
- Drought generation plants senesced two days before pre-drought plants, but was not statistically significant

CONCLUSIONS: Drought avoidance?
- Differences between the pre- and drought lineages are consistent with a drought avoidance strategy
- Earlier emergence and flowering would result in less exposure to drought
- Population responses differed
- These responses may be exacerbated as climate continues to change
- Some populations may be less adaptable and so are more vulnerable to climate change

RAPID ADAPTATION VS PLASTICITY: Future directions
- Observed changes may be the result of rapid genetic adaptation, phenotypic plasticity, or genetic diversity in the seed bank
- A drought study is planned to determine whether observed changes are adaptive and whether observed changes are sustained

REFERENCES:
- Sexton, J. et al. “Gene Flow Increases Fitness at the Warm Edge of a Species’ Range.” PNAS. 108 (28)