Endophyte community shifts in response to drought in monkeyflowers

(Erythranthe laciniata) grown in native soil

SHAY, J.E.^{1*}, BROOKS, L.², KAZE, M.¹, FRANK, A.C.¹, SEXTON, J.P.¹, SISTROM, M.¹

¹University of California, Merced; ²Utah Valley University

Background and Introduction

- All plants have a community of asymptomatic microbes inhabiting their tissue known as endophytes.
- Endophytes are an extension of plant host phenotype and can help plants adapt in response to stress, including drought¹.
- Stressful conditions may select for distinct endophyte taxa with specific functions².
- As plants experience stress, these microbial community compositions may shift, providing evidence for the effect of stress on the endophyte community structure.
- Further understanding of how the structure of endophytes communities shift in response to drought is a potentially important avenue for identifying significant biotic interactions that may play a role in stress response.

PROJECT GOAL: To examine changes in endophyte communities in plants suffering from drought.

The Plant Host: Erythranthe laciniata

- Cut-Leafed Monkeyflower (E. laciniata) is an endemic flowering plant of the Sierra Nevada range in California
- Model system in ecological and evolutionary genetics
- Lives in a known stressful habitat experiencing drought³
- Annual plant to measure lifetime fitness

UNIVERSITY OF CALIFORNIA

MERCED

- Easy to collect and grow in lab with short generation times
- Capable of self-fertilizing to maintain populations
- Grows from mossy patches in granite rock outcrops (Fig. 1)

JGI

Methods and Materials Soil Collection and Plant Growth

- Soil collected in 2017 containing native microbes
- Raised plants from seed bank in growth chambers

Endophyte Isolation and Sampling

- Plants separated in three treatments 1) Pre-experiment (harvested at maturity), 2) Drought, and 3) Control (harvested 2 weeks into maturity) (Fig. 2).
- Roots and shoots sampled separately (Fig. 2)
- Endophytes isolated by sonication⁴ (Fig. 3).

- Fungi: ITS2⁶

A DOE OFFICE OF SCIENCE USER FACILITY

- **Community Bioinformatics**
- Microbial composition analyzed using Qiime27.
- Microbial community compared using Unifrac⁸.

Lundberg et al. 2012

Axis 3_(5.455 %)

CALIFORNIA

NATIVE PLANT SOCIETY

- Species richness varies by plant compartment.
- The root has more fungal and bacterial species.

society of america

SOMA

Sonoma County Mycological Association

Conclusions

- Drought alters the endophyte root community significantly.
- Both community composition and species richness were increased in the root more than in the shoot.
- The root endophytes in E. laciniata may play an important role in drought stress response.

ත

jshay@ucmerced.edu Thank you jackieshay.com for reading jackie e shay 🗑