

Post-fire Woody Seedling Regeneration: Impacts from Dozer Lines Claire Monahan, Hannah Weinberger, Kristen Kaczynski **California State University, Chico**

Location: 32-Fire BLM land, NE of Chico, CA

- Large circular plots
- Plot area: ~ $95m^2$

Table 1: Number of plot types for each vegetation type

egetation Type	Burned	Dozer Line	Unburned (Reference)	
CA Black Oak	5	3	5	
Manzanita	3	3	3	
Wedgeleaf	3	3	3	

Cercocarpus betuloides – only an individual seedling found in one Manzanita dozer line plot (Fig. 5) Quercus kelloggii – some presence in Manzanita vegetation community plots but absent in all California Black

Oak vegetation plots (Figs. 4 & 5)

Wedgeleaf vegetation dozer line plots – absence of all studied woody vegetation species (Fig. 6)

	Burn		Dozer Line		Reference	
	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum
ica	0	0	2	0	7	0
	0	0	3	0	3	0
านร	216	3	1	0	0	0
	0	0	0	0	2	0
	0	0	6	0	26	0
а	1	0	0	0	0	0
-						

	•					
	Burn		Dozer Line		Reference	
	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum
	0	0	3	0	0	0
nus	15	0	3	0	0	0
	10	0	19	0	2	0
es	0	0	1	0	0	0
anita	2	0	0	0	0	0
а	3	0	0	0	1	0

Studied Seedling Species

Arctostaphylos viscida 28 April 2019

Ceanothus integerrimus 5 May 2019

Conclusions **Burned Communities:**

Dozer Line Communities:

Literature Cited

Acknowledgments

- California State University, Chico

- Big Chico Creek Ecological Reserve

Arctostaphylos manzanita 28 April 2019

Quercus kelloggii

9 May 2019

Pinus sabiniana 9 May 2019

28 April 2019

Lonicera interrupta 14 May 2019

The lack of regenerating **Q. kelloggii** and **C. cuneatus** seedlings in their designated communities may lead to future shifts in community composition.

Q. kelloggii seed absence can be explained by the sustained direct sunlight received in the burned area, which causes seed death³ Also, there is the potential of fatal mold and fungal **infections** occurring from seed burial under moist duff.³

• *C. cuneatus* seeds have adapted to be stimulated by fire³ This raises questions towards seedling absence in the burn plots, which may have partially been caused by strong competitors, like **C. integerrimus** and **L. interrupta**.

In the burned Manzanita communities **A. viscida** and **A.** *manzanita* presence is to be expected due to the need of fire to break seed dormancy.³

 Dozer line practices can have significant impacts on vegetation community recovery.

All the dozer line vegetation communities were **not making an** apparent recovery to pre-fire community compositions.

Future Research

• How can fire suppression techniques be altered in order to have less of an impact on vegetation recovery?

• Can fuel reduction practices assist in a vegetation community's ability to regenerate to the previous community composition when a fire does occur?

Forest Service RSL, 2003, CALVEG Vegetation Mapping Program, 1920 20th St, Sacramento, CA 95814, http://www.fs.fed.us/r5/rsl/projects/mapping/

. Kuenzi, A. M., Fulé, P. Z. & Sieg, C. H. Effects of fire severity and pre-fire stand treatment on plant community recovery after a large wildfire. Forest Ecology and Management 255, 855-865 (2008). 3. United States Forest Service, 2019, Fire Effects Information System, www.feis-crs.org/feis/.

Department of Geological & Environmental Science,

• Applied Ecology Lab, California State University, Chico • Don Hankins Ph.D., Department of Geography & Planning

Author's Contact

Claire Monahan: cemonahan@mail.csuchico.edu