The Effect of Climate Change and Site on the Above- and Belowground Bacterial Communities in **Subalpine Conifer Seedlings**

Dana L. Carper¹, Alyssa A. Carrell^{1,3}, Lara M. Kueppers^{2,4}, and A. Carolin Frank^{1,2} ¹Life and Environmental Sciences, University of California Merced ²Sierra Nevada Research Institute, School of Natural Sciences, University of California Merced ³ Department of Biology, Duke University

INTRODUCTION

Climate change is predicted to shift the distributions of forest trees upward, moving the current forest boundary into the alpine zone. However, upward elevational shifts depend on the ability of seedlings to establish from seed. In the alpine-treeline ecotone, climate change could enhance establishment by reducing cold stress, while at lower elevations, climate change could exacerbate heat and drought stress impairing seedling recruitment. The ability of seedlings to survive depends on interactions between genetic and environmental controls on seedling physiology [1–3]. Additionally, though rarely considered, seedling interactions with microbes in the soil, as well as in and on seedling tissues, could influence seedling establishment. Increasingly recognized as a dynamic constituent of plants [4], the plant microbiome has the potential to buffer plants against climate stressors. Microbial symbioses can accelerate host adaptation to different climates and stressful environments [5,6], potentially promoting climate-induced expansion at host range limits. Alternatively, a lack of microbial taxa resident in newly suitable habitat or climate change in existing habitat could disrupt adapted host-microbe associations, thereby limiting expansion and persistence [7]. Subalpine conifer seedlings are mes of temperature, humidity, radiation, and soil moisture [8–10], possibly assisted by the native seedling microbiome, including mycorrhizal fungi [11–16]. With climate change, new and existing seedling-microbe associations could contribute to establishment beyond the current range, as well as to seedling recruitment under warmer and dryer conditions within the current range. On the other hand, seedling-microbe associations could constrain uphill migration of forest trees if host and microbes differ enough in their dispersal capacity or response to climatic change [7,17–21].

biome consists of bacteria and fungi in the rhizosphere, phyllosphere, and endosphere. Given their different roles, dispersal capacities, and degrees of host specialization, members of the microbiome will likely respond independently to climate change, and differ in their capacity to buffer their hosts against associated stressors. Recent work on grasses demonstrates that fungal endophytes can mediate plant response to climate change [22] and broaden the geographic niche of their host [23]. Additionally, rapid changes in belowground fungal and bacterial communities has been shown to influence plant response to drought stress [24], suggesting a potential role for soil microbes in mediating plant response to climate change. The role of the bacterial endophyte community in mediating plant response to climate change is less clear [25], but like their fungal counterparts bacterial endophytes can buffer plants under stress [26–31]. Endophytes of adult limber pine, a subalpine conifer that is widespread in the Western United States, are thought to fix atmospheric nitrogen (N), which they potentially share with the host [36]. Little is known about the endophytic bacteria throughout a tree's lifetime, and the function of the endophytic community in seedlings may differ from that in adults. To better understand the potential functional roles of endophytes at the earliest tree life stages, we characterized the above- and belowground bacterial endophyte communities in limber pine seedlings establishing in *in situ* common gardens within and beyond the elevation range of subalpine forest.

- 1. To gain a better understanding of the endophyte community in pine seedlings, including its potential functional role
- 2. To understand how the endophyte community varies across sites across an elevation and canopy gradient
- 3. To understand whether the endophyte community is sensitive to experimental climate change within the alpine-treeline ecotone

Fig. 1 Unweighted and weighted UniFrac distances visualized by PCoA colored by tissue type

Fig. 3 Unweighted and Weighted UniFrac distances visualized by PCoA colored by site and treatment

⁴Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory

RESULTS

	g. 2 H	eatmap of	the t	ор	10	ΟI		s to	or (ead	ch '	ΠS	SU	eτ	yp	e												
A			forest		alpine	,									tre	eline	;											
	010	Lineage	ссс	С	с с	C	С	с с	С	С	с н	Н	Н	н н	н ни	V HW	HW	W	W	W	W١	N	W	w v	v v	v w		
	OTU_1	Oxalobacteraceae	10.6 23.8 15.	1 22.3	49.1 57.8	57.8	54.1	<mark>49.7</mark> 35.9	9 34.6	51.0 2	<mark>1.8</mark> 30.1	21.3	37.1	<mark>60.9</mark> 32	<mark>2.6</mark> 11.	9 10.5	31.5	2.3	29.7	14.3	26.1 1	12.1	9.9	28.4 2	5.6 <mark>47</mark>	.5 51.5		
	OTU_4	Oxalobacteraceae	16.1 4.9 8.5	5 7.0	0.5 0.5	1.0	4.1	1.5 2.4	6.3	1.5	2.2 2.5	6.1	7.4	11.0 <mark>1</mark>	.8 10.	7 6.5	8.9	2.6	9.9	50.0	22.2	3.3 1	16.4	9.6 6	.9 6.	7 3.0		
	OTU_2	Sphingobacteriaceae	2.5 3.8 5.5	5 6.8	33.7 2.3	3.7	1.7	14.5 3.0	3.6	7.3	8.2 9.8	6.9	1.9	1.4 5	5.3 5.1	l 6.7	9.1	14.6	2.2	2.0	7.2	1.8 1	10.0	16.7 <mark>1</mark>	.7 7.	1 4.2		
	OTU_3	Acetobacteraceae	1.3 2.0 1.7	7 1.7	0.3 0.3	0.5	3.3	4.9 1.1	4.3	1.1	.8 1.0	1.0	14.0	2.1 13	3.8 0.8	3 1.2	4.2	0.4	8.5	1.7	3.7 2	29.4	9.3	6.2 2	1.6 2.	6 0.5		
	OTU_7	Burkholderiaceae	8.5 2.6 7.0	2.7	1.6 0.1	5.3	2.6	2.5 0.3	3.8	0.5	2.2 1.3	1.6	0.4	1.5 3	8.5 0.9	9 1.2	6.7	0.5	5.7	1.1	2.8 2	2 <mark>0.6</mark> 1	15.3	8.5 3	.7 2.	1 0.9		
	OTU_123	Oxalobacteraceae	5.1 1.7 1.0) 3.6	0.4 1.3	2.6	1.2	2.0 1.0	2.5	1.5	2.8 8.6	5.7	4.0	1.3 6	3.7 3.4	4 2.2	2.3	0.6	3.0	8.5	4.8	9.0	2.8	2.2 2	.2 1.	4 2.7		
	OTU_1096	Oxalobacteraceae	12.2 30.2 3.8	3 3.4	0.2 0.7	0.4	3.5	1.2 0.9	1.7	0.9 (0.8 0.8	0.9	1.2	0.1 1	.3 0.8	3 0.5	1.0	0.3	3.1	0.5	0.2	0.1	0.6	0.8 6	.0 0.	5 1.7		
	OTU_8	Acetobacteraceae	0.8 4.1 5.4	1.1	0.2 0.2	0.5	2.2	1.6 3.8	2.9	1.0	.7 1.1	2.1	7.5	1.6 4	1.0 2.8	3 2.4	2.0	1.8	3.7	0.7	0.8	3.0	3.5	2.7 5	.5 0.	8 0.9		
	OTU_1001	Burkholderiaceae	16.8 2.9 4.3	8 0.9	0.1 0.0	0.1	0.4	0.2 0.4	0.5	0.0	0.2 0.9	1.3	0.0	0.0 0).0 1.7	7 2.4	0.3	3.2	0.7	0.2	0.2	0.1	0.1	0.1 5	.4 0.	1 0.7		
	OTU_11	Sphingomonadaceae	0.2 0.3 0.4	4 4.7	0.3 0.3	0.7	0.7	0.4 1.0	1.1	5.1	2.2 2.2	2.8	0.5	0.6 2	2.4 2.3	3 2.2	3.8	1.6	0.8	1.4	2.2	0.6	4.2	2.1 0	.7 6.	3 1.7		
D																												
B			forest	al	pine									t	treeli	ne												
B	OTU	Lineage	forest	al c	<mark>pine</mark> сс		<u>с (</u>	с с	С	C (. н	н	н н	t HV	treeli м нw	ne ′ нw			W	W		N	— W					
B	OTU 0TU 1001	Lineage	forest C C C 25.5 11.7 7.2	a C	pine C C 0.0 3.4	C 2.8	C (C C 0.3 3.4	C 10.3	C (C H 8 0.7	H 2.8	H H 4.5 1	t HV 2.8 5.9	treeli w hw 9 4.8	NE 7 HW 3.4	W 9.0	W 3.1	W 23.4	W 5.2	W \ 0.3 2	N '	— W 1.5					
B	OTU_1001 OTU_4	Lineage Burkholderiaceae Oxalobacteraceae	forest C C 25.5 11.7 7.2 0.3 0.3 0.3	al C 5.5	pine C C 0.0 3.4 0.0 7.9	C 2.8 0.3	C (21.0 (0.0 1	C C 0.3 3.4 1.7 2.1	C 10.3 0.3	C (0.3 2 2.8 2	H 8 0.7 4 4.1	H 2.8 0.3	H H 4.5 1 23.4 (t HV 2.8 5.9 3.4 2.4	treeli w нw 9 4.8 4 0.0	NE 7 HW 3.4	W 9.0 5.5	W 3.1 45.2	W 23.4 3.1	W 5.2 3.1	W \ 0.3 2 11.7 7	N	W 4.5					
B	OTU_1001 OTU_4 OTU_2	Lineage Burkholderiaceae Oxalobacteraceae Sphingobacteriaceae	forest C C 25.5 11.7 7.2 0.3 0.3 0.3 2.8 4.1 15.5	al C 5.5 0.3	c c 0.0 3.4 0.0 7.9 0.0 1.7	C 2.8 0.3 3.4	C (21.0 (0.0 1 1.7 1	C C 0.3 3.4 1.7 2.1 0.7 1.7	C 10.3 0.3 5.2	C (0.3 2 2.8 2 16.9 1	H 8 0.7 4 4.1 0 2.4	H 2.8 0.3 1.7	H H 4.5 1 23.4 3	t HV 2.8 5.9 3.4 2.4 3.1 2.4	treeli W HW 9 4.8 4 0.0 4 2.1	NE 7 HW 3.4 35.5 2.4	W 9.0 5.5	W 3.1 45.2	W 23.4 3.1 14.5	W 5.2 3.1 1.7	W \ 0.3 2 11.7 7 12.4 2	N	W I.5 7.6			Key	/	
B	OTU_1001 OTU_4 OTU_2 OTU_10	Lineage Burkholderiaceae Oxalobacteraceae Sphingobacteriaceae Geobacteraceae	forest C C C 11.7 25.5 11.7 0.3 0.3 2.8 4.1 0.3 0.3	al C 5.5 0.3 1.0 2.4	C C 0.0 3.4 0.0 7.9 0.0 1.7 0.0 4.1	C 2.8 0.3 3.4 16.9	C (21.0 (0.0 1 1.7 1 1.0 (C C 0.3 3.4 1.7 2.1 0.7 1.7 0.3 23.1	C 10.3 0.3 5.2 0.3	C (0.3 2 2.8 2 16.9 1 0.3 11	H 8 0.7 4 4.1 0 2.4 .0 8.3	H 2.8 0.3 1.7 0.0	H H 4.5 1 23.4 3 2.4 3 2.8 3	t HV 2.8 5.9 3.4 2.4 3.1 2.4 3.1 4.9	treeli W HW 9 4.8 4 0.0 4 2.1 5 0.0	NE 7 HW 3.4 35.5 2.4 3.1	W 9.0 5.5 1.4	W 3.1 45.2 1.7 0.3	W 23.4 3.1 14.5 0.7	W 5.2 3.1 1.7	W \ 0.3 2 11.7 7 12.4 2 0.0 0	N 2.8 4 7.9 7 2.4 2 0.0 12	W 4.5 2.8 2.1		0-5%	Key	/	30.1-40%
B	OTU_1001 OTU_4 OTU_2 OTU_10 OTU_1	Lineage Burkholderiaceae Oxalobacteraceae Sphingobacteriaceae Geobacteraceae Oxalobacteraceae	forest C C 25.5 11.7 7.2 0.3 0.3 0.3 2.8 4.1 15.5 0.0 0.3 0.3 0.0 0.3 0.3	C 5.5 0.3 1.0 2.4	C C 0.0 3.4 0.0 7.9 0.0 1.7 0.0 4.1 0.0 0.0	C 2.8 0.3 3.4 16.9 1.0	C (21.0 (0.0 1 1.7 1 1.0 (2.1 2	C C 0.3 3.4 1.7 2.1 0.7 1.7 0.3 23.1 2.4 0.7	C 10.3 0.3 5.2 0.3 0.3	C (0.3 2 2.8 2 16.9 1 0.3 1	H 8 0.7 4 4.1 0 2.4 .0 8.3 3 7.9	H 2.8 0.3 1.7 0.0 0.3	H H 4.5 1 23.4 3 2.4 3 2.8 3 8.6 0	t HV 2.8 5.9 3.4 2.4 3.1 2.4 3.1 4.9 0.0 5.2	treeli W HW 9 4.8 4 0.0 4 2.1 5 0.0 2 29.7	NE 7 HW 3.4 35.5 2.4 3.1	W 9.0 5.5 1.4 0.0	W 3.1 45.2 1.7 0.3	W 23.4 3.1 14.5 0.7 0.3	W 5.2 3.1 1.7 1.4	W \ 0.3 2 11.7 7 12.4 2 0.0 0 3.4 6	N 2.8 4 2.8 4 7.9 7 2.4 2 0.0 12 5.2 2	W 4.5 2.8 2.1		0-5% 5.1-1	Key 0%	/	30.1-40% 40.1-50%
B	OTU_1001 OTU_4 OTU_2 OTU_10 OTU_1 OTU_1037	Lineage Burkholderiaceae Oxalobacteraceae Sphingobacteriaceae Geobacteraceae Oxalobacteraceae Enterobacteriaceae	forest and the state of	C 5.5 0.3 1.0 2.4 1.0	C C 0.0 3.4 0.0 7.9 0.0 1.7 0.0 4.1 0.0 0.0 32.8 6.2	C 2.8 0.3 3.4 16.9 1.0 1.0	C C 21.0 0 0.0 1 1.7 1 1.0 0 2.1 2 0.7 0	C C 0.3 3.4 1.7 2.1 0.7 1.7 0.3 23.1 2.4 0.7 0.7 0.0	C 10.3 0.3 5.2 0.3 0.3 0.3	C (0.3 2 2.8 2 16.9 1 0.3 1 1.7 0 0.3 12	H 8 0.7 4 4.1 0 2.4 .0 8.3 3 7.9 .1 0.3	H 2.8 0.3 1.7 0.0 0.3 0.3	H H 4.5 1 23.4 3 2.4 3 2.8 3 8.6 0 0.3 0	t HV 2.8 5.9 3.4 2.4 3.1 2.4 3.1 4.9 0.0 5.2 0.7 0.3	treeli W HW 9 4.8 4 0.0 4 2.1 5 0.0 2 29.7 3 0.0	NC HW 3.4 35.5 2.4 3.1 4 2.4 0.3	W 9.0 5.5 1.4 0.0 5.5 1.0	W 3.1 45.2 1.7 0.3 0.3 0.3	W 23.4 3.1 14.5 0.7 0.3 0.0	W 5.2 3.1 1.7 1.4 0.7	W N 0.3 2 11.7 7 12.4 2 0.0 0 3.4 6 0.0 0	N 2.8 4 7.9 7 2.4 2 0.0 11 3.2 2 0.3 0	W 4.5 7.6 2.8 2.1 2.1		0-5% 5.1-1 10.1-	Key 0% -20%		30.1-40% 40.1-50% 50.1-60%
B	OTU_1001 OTU_4 OTU_2 OTU_10 OTU_1 OTU_1037 OTU_425	Lineage Burkholderiaceae Oxalobacteraceae Sphingobacteriaceae Geobacteraceae Oxalobacteraceae Enterobacteriaceae Enterobacteriaceae	forest C C C C 25.5 11.7 7.2 0.3 0.3 0.3 2.8 4.1 15.5 0.0 0.3 0.3 0.0 0.3 11.7 0.0 0.3 11.7 0.0 0.3 11.7 0.0 0.3 11.7 0.0 0.3 11.7 0.0 0.3 11.7 0.0 0.3 11.7	a C 5.5 0.3 1.0 2.4 1.0 7 0.7	C C 0.0 3.4 0.0 7.9 0.0 1.7 0.0 4.1 0.0 0.0 32.8 6.2 29.3 8.3	C 2.8 0.3 3.4 16.9 1.0 1.0 0.7	C C 21.0 0 0.0 1 1.7 1 1.0 0 2.1 2 0.7 0 0.7 0	C C 0.3 3.4 1.7 2.1 0.7 1.7 0.3 23.1 2.4 0.7 0.7 0.0 0.7 0.0	C 10.3 0.3 5.2 0.3 0.3 0.3 0.7 0.0	C C 0.3 2 2.8 2 16.9 1 0.3 11 0.3 12 0.3 12 0.3 12	 H 0.7 4.1 2.4 2.3 7.9 0.3 21.7 	H 2.8 0.3 1.7 0.0 0.3 0.3 0.3	H H 4.5 1 23.4 3 2.4 3 2.8 3 8.6 0 0.3 0	t HV 2.8 5.9 3.4 2.4 3.1 2.4 3.1 4.9 0.0 5.2 0.7 0.0	treeli W HW 9 4.8 4 0.0 4 2.1 5 0.0 2 29.7 3 0.0 0 0.0	NC HW 3.4 35.5 2.4 3.1 2.4 3.1 2.4 0.3 1.7	W 9.0 5.5 1.4 0.0 5.5 1.0 1.0	W 3.1 45.2 1.7 0.3 0.3 0.0 1.0	W 23.4 3.1 14.5 0.7 0.3 0.0 0.0	W 5.2 3.1 1.7 1.4 0.7 0.3	VV N 0.3 2 11.7 7 12.4 2 0.0 0 3.4 6 0.0 0 0.0 0	N 1 2.8 4 7.9 7 2.4 2 0.0 11 5.2 2 0.3 0 0.0 4	W I.5 2.8 2.1 2.1 0.0		0-5% 5.1-1 10.1- 20.1-	Key 0% -20% -30%		30.1-40% 40.1-50% 50.1-60% >60.1%
B	OTU_1001 OTU_4 OTU_2 OTU_10 OTU_10 OTU_1037 OTU_425 OTU_1328	Lineage Burkholderiaceae Oxalobacteraceae Sphingobacteriaceae Geobacteraceae Oxalobacteraceae Enterobacteriaceae Enterobacteriaceae Oxalobacteraceae	forest and the second seco	A C 5.5 0.3 1.0 2.4 1.0 2.4 1.0 0.7 0.0	C C 0.0 3.4 0.0 7.9 0.0 1.7 0.0 4.1 0.0 0.0 32.8 6.2 29.3 8.3 0.0 0.3	C 2.8 0.3 3.4 16.9 1.0 1.0 0.7	C C 21.0 0 0.0 1 1.7 1 1.0 0 2.1 2 0.7 0 0.7 0 0.0 0	C C 0.3 3.4 1.7 2.1 0.7 1.7 0.3 23.1 2.4 0.7 0.7 0.0 0.0 0.3 0.0 1.0	C 10.3 0.3 5.2 0.3 0.3 0.3 0.7 0.0 1.0	C C 0.3 2 2.8 2 16.9 1 0.3 11 0.3 12 0.3 12 0.3 12 0.3 12 0.3 12 0.3 12 0.3 12 0.3 12 0.3 12 0.3 12	H 8 0.7 4 4.1 0 2.4 .0 8.3 3 7.9 .1 0.3 9 21.7 1 0.7	H 2.8 0.3 1.7 0.0 0.3 0.3 0.3 0.0	H H 4.5 1 23.4 3 2.4 3 2.8 3 0.0 0 0.0 0	t HV 2.8 5.9 3.4 2.4 3.1 2.4 3.1 4.9 0.0 5.2 0.7 0.3 0.0 0.0	treeli W HW 9 4.8 4 0.0 4 2.1 5 0.0 2 29.7 3 0.0 0 0.0 .4 40.3	 HWV 3.4 35.5 2.4 3.1 2.4 0.3 0.3 1.7 3.8 	W 9.0 5.5 1.4 0.0 5.5 1.0 1.0 0.0	W 3.1 45.2 1.7 0.3 0.3 0.0 1.0 4.8	W 23.4 3.1 14.5 0.7 0.3 0.0 0.0	W 5.2 3.1 1.7 1.4 0.7 0.3 0.3 0.0	VV N 0.3 2 11.7 7 12.4 2 0.0 0 3.4 6 0.0 0 0.0 0 1.7 0	N 1 2.8 4 7.9 7 2.4 2 0.0 12 0.3 0 0.0 4 0.3 0	W I.5 2.8 2.1 2.1 0.0 I.5		0-5% 5.1-1 10.1- 20.1-	Key 0% -20% -30%		30.1-40% 40.1-50% 50.1-60% >60.1%
B	OTU_1001 OTU_4 OTU_2 OTU_10 OTU_10 OTU_1037 OTU_425 OTU_1328 OTU_78	Lineage Burkholderiaceae Oxalobacteraceae Sphingobacteriaceae Geobacteraceae Oxalobacteraceae Enterobacteriaceae Enterobacteriaceae Oxalobacteraceae Streptomycetaceae	forest C C C Inn 25.5 Inn 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3	al C 5.5 0.3 1.0 2.4 1.0 2.4 1.0 0.7 0.0 0.0 31.4	C C 0.0 3.4 0.0 7.9 0.0 1.7 0.0 4.1 0.0 0.0 32.8 6.2 29.3 8.3 0.0 0.3 0.0 0.3	C 2.8 0.3 3.4 16.9 1.0 1.0 0.7 0.0	C C 21.0 0 0.0 1 1.7 1 1.0 0 2.1 2 0.7 0 0.7 0 0.0 0	C C 0.3 3.4 1.7 2.1 0.7 1.7 0.3 23.1 2.4 0.7 0.7 0.0 0.0 0.3 0.0 1.0 0.0 0.0	C 10.3 0.3 5.2 0.3 0.3 0.3 0.7 0.0 1.0 8.6	C C 0.3 2 2.8 2 16.9 1 0.3 11 0.3 12 0.3 12 0.3 12 0.3 12 0.3 12 0.3 12 0.0 2 0.0 2 0.0 0	H 8 0.7 4 4.1 0 2.4 .0 8.3 3 7.9 .1 0.3 9 21.7 1 0.7 0 0.0	H 2.8 0.3 1.7 0.0 0.3 0.3 0.3 0.3 0.0 0.0 18.6	H H 4.5 1 23.4 3 2.4 3 2.8 3 0.0 0 0.0 0 0.0 0	t HV 2.8 5.9 3.4 2.4 3.1 2.4 3.1 4.9 0.0 5.2 0.0 0.0 0.0 0.0 0.0 111 0.3 5.2	treeli W HW 9 4.8 4 0.0 4 2.1 5 0.0 2 29.7 3 0.0 0 0.0 .4 40.3 2 0.0	 HWV 3.4 35.5 2.4 3.1 2.4 0.3 1.7 3.8 0.0 	W 9.0 5.5 1.4 0.0 5.5 1.0 1.0 2.4 0.7	W 3.1 45.2 1.7 0.3 0.3 0.0 1.0 4.8	W 23.4 3.1 14.5 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3	W 5.2 3.1 1.7 1.4 0.7 0.3 0.3 0.3 0.0 3.1	W N 0.3 2 11.7 7 12.4 2 0.0 0 3.4 6 0.0 0 0.0 0 1.7 0 0.3 0	N 1 2.8 4 7.9 7 2.4 2 0.0 11 3.2 2 0.3 0 0.3 0 0.7 0	W 4.5 2.8 2.1 2.1 0.0 4.5 0.7		0-5% 5.1-1 10.1- 20.1-	Key 0% -20% -30%		30.1-40% 40.1-50% 50.1-60% >60.1%
B	OTU_1001 OTU_4 OTU_2 OTU_10 OTU_10 OTU_1037 OTU_425 OTU_1328 OTU_78 OTU_7	Lineage Burkholderiaceae Oxalobacteraceae Sphingobacteriaceae Geobacteraceae Oxalobacteraceae Enterobacteriaceae Enterobacteriaceae Streptomycetaceae Burkholderiaceae	forest C C C 11.7 25.5 11.7 0.3 0.3 0.3 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3	 C 5.5 0.3 1.0 2.4 1.0 2.4 0.7 0.0 0.0 31.4 0.0 	C C 0.0 3.4 0.0 7.9 0.0 7.9 0.0 1.7 0.0 4.1 0.0 0.0 32.8 6.2 29.3 8.3 0.0 0.3 0.0 0.3 1.4 2.8	C 2.8 0.3 3.4 16.9 1.0 1.0 0.7 0.0 0.0	C C 21.0 0 0.0 1 1.7 1 1.0 0 2.1 2 0.7 0 0.7 0 0.0 0 0.0 0 0.0 0	C C 0.3 3.4 1.7 2.1 0.7 1.7 0.3 23.1 2.4 0.7 0.7 0.0 0.0 0.3 0.0 1.0 0.0 0.0 1.4 2.1	C 10.3 0.3 5.2 0.3 0.3 0.7 0.0 1.0 1.0 8.6	C C 0.3 2 2.8 2 16.9 1 0.3 1 0.3 1 0.3 1 0.0 5 0.0 2 0.0 0 1.7 0	H 8 0.7 4 4.1 0 2.4 .0 8.3 3 7.9 .1 0.3 9 21.7 1 0.7 0 0.0 8 1.4	H 2.8 0.3 1.7 0.0 0.3 0.3 0.3 0.3 0.0 18.6	H H 4.5 1 23.4 3 2.4 3 2.8 3 0.0 0 0.0 00000000	t HV 2.8 5.9 3.4 2.4 3.1 2.4 3.1 4.9 0.0 5.2 0.0 0.0 0.0 0.0 0.0 11. 0.3 5.2 0.3 0.3	treeli W HW 9 4.8 4 0.0 4 2.1 5 0.0 2 29.7 3 0.0 0 0.0 .4 40.3 2 0.0 3 0.0	HWV 3.4 35.5 2.4 35.5 2.4 3.1 2.4 3.1 <td< td=""><td>W 9.0 5.5 1.4 0.0 5.5 1.0 2.4 0.7 0.3</td><td>W 3.1 45.2 1.7 0.3 0.3 0.0 1.0 4.8 0.0 3.1</td><td>W 23.4 3.1 14.5 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 1.0</td><td>W 5.2 3.1 1.7 1.4 0.7 0.3 0.3 0.3 0.0 3.1 1.0</td><td>VV N 0.3 2 11.7 7 12.4 2 0.0 0 3.4 6 0.0 0 0.17 0 0.3 0 0.3 0</td><td>N N 2.8 4 7.9 7 2.4 2 0.0 12 0.2 2 0.3 0 0.3 0 0.7 0 0.0 1</td><td>W 4.5 7.6 2.8 2.1 2.1 0.0 4.5 0.7</td><td></td><td>0-5% 5.1-1 10.1- 20.1-</td><td>Key 0% -20% -30%</td><td></td><td>30.1-40% 40.1-50% 50.1-60% >60.1%</td></td<>	W 9.0 5.5 1.4 0.0 5.5 1.0 2.4 0.7 0.3	W 3.1 45.2 1.7 0.3 0.3 0.0 1.0 4.8 0.0 3.1	W 23.4 3.1 14.5 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 1.0	W 5.2 3.1 1.7 1.4 0.7 0.3 0.3 0.3 0.0 3.1 1.0	VV N 0.3 2 11.7 7 12.4 2 0.0 0 3.4 6 0.0 0 0.17 0 0.3 0 0.3 0	N N 2.8 4 7.9 7 2.4 2 0.0 12 0.2 2 0.3 0 0.3 0 0.7 0 0.0 1	W 4.5 7.6 2.8 2.1 2.1 0.0 4.5 0.7		0-5% 5.1-1 10.1- 20.1-	Key 0% -20% -30%		30.1-40% 40.1-50% 50.1-60% >60.1%
B	OTU_1001 OTU_4 OTU_2 OTU_10 OTU_10 OTU_1037 OTU_425 OTU_1328 OTU_78 OTU_7	Lineage Burkholderiaceae Oxalobacteraceae Sphingobacteriaceae Geobacteraceae Oxalobacteraceae Enterobacteriaceae Enterobacteriaceae Streptomycetaceae Burkholderiaceae	forest C C C 25.5 11.7 7.2 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.3 11.7 0.0 0.3 0.3 0.0 0.3 11.7 0.0 0.3 11.7 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.1 0.3 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.5 0.3 0.3 0.4 0.3 0.3 0.5 0.3 0.3 0.5 0.3 0.3 0.5 0.3 0.3 0.5 0.3 0.3 0.5 0.3 0.3 14.8 13.1 0.3	C 5.5 0.3 1.0 2.4 1.0 2.4 1.0 0.0 31.4 0.0	C C 0.0 3.4 0.0 7.9 0.0 1.7 0.0 4.1 0.0 0.0 32.8 6.2 29.3 8.3 0.0 0.3 0.0 0.3 1.4 2.8	C 2.8 0.3 3.4 16.9 1.0 1.0 0.7 0.0 0.0 0.0	C C 21.0 0 0.0 1 1.7 1 1.0 0 2.1 2 0.7 0 0.7 0 0.0 0 0.0 0	C C 0.3 3.4 1.7 2.1 0.7 1.7 0.3 23.1 2.4 0.7 0.7 0.0 0.0 0.3 0.0 1.0 0.0 0.0 1.4 2.1	C 10.3 0.3 5.2 0.3 0.3 0.7 0.0 1.0 1.0 8.6 0.3	C C 0.3 2 2.8 2 16.9 1 0.3 12 0.3 12 0.3 12 0.3 12 0.3 12 0.0 2 0.0 2 0.0 0 1.7 4	 H 0.7 4.1 2.4 0.2.4 8.3 7.9 1.0.3 21.7 0.3 21.7 0.3 21.7 0.3 1.4 	H 2.8 0.3 1.7 0.0 0.3 0.3 0.0 0.0 18.6 0.0	H H 4.5 1 23.4 3 2.4 3 2.8 3 0.3 0 0.0 00000000	t HV 2.8 5.9 3.4 2.4 3.1 2.4 3.1 4.9 5.0 5.2 5.7 0.0 5.0 0.0 0.0 111. 0.3 5.2 0.3 0.3	treeli W HW 9 4.8 4 0.0 4 2.1 5 0.0 2 29.7 3 0.0 0 0.0 .4 40.3 2 0.0 3 0.0	NC HW 3.4 35.5 2.4 3.1 2.4 3.1 2.4 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	W 9.0 5.5 1.4 0.0 5.5 1.0 0.0 2.4 0.7 0.3	W 3.1 45.2 1.7 0.3 0.3 0.0 1.0 4.8 0.0 3.1	W 23.4 3.1 14.5 0.7 0.3 0.0 0.0 0.0 0.0 0.0 11.0	W 5.2 3.1 1.7 1.4 0.7 0.3 0.3 0.0 3.1 1.0	W N 0.3 2 11.7 7 12.4 2 0.0 0 3.4 6 0.0 0 1.7 0 0.3 0 0.3 0	N N 2.8 4 7.9 7 2.4 2 0.0 11 5.2 2 0.3 0 0.0 4 0.3 0 0.0 1	W 4.5 7.6 2.8 2.1 2.1 0.0 4.5 0.7 0.3		0-5% 5.1-1 10.1 20.1	Key 0% -20% -30%		30.1-40% 40.1-50% 50.1-60% >60.1%

Figure 1 Unweighted and weighted UniFrac distances visualized by PCoA colored by tissue type (Top left). Samples clustered by tissue type with aboveground tissues forming one cluster and belowground tissues forming another cluster. This was significant when looking at both (A) unweighted distances which only takes into account presence/absence (ANOSIM: R-statistic=0.6503 P-value=0.001 and PERMANOVA: Pseudo-F=8.9379 P-value=0.001) and (B) weighted distances which takes into account relative abundances of the species (ANOSIM: R-statistic=0.3520 P-value=0.001 and PERMANOVA: Pseudo-F=11.8849 P-value=0.001) Figure 2 Heatmap showing the 10 most abundant OTUs and their relative abundances as percentages of all the 16S rRNA gene sequences in each sample. (Top right). (A) aboveground and (B) belowground tissues types. Both above- and belowground tissues were dominated by Betaproteobacteria, 58.7% and 32.7% respectively. Belowground tissues had a larger portion of the endophytic community comprised of Deltaproteobacteria (7.0% vs. 1.1%) and Gammaproteobacteria (12.3% vs. 2.7%). The top two OTUs (OTU_1 and OTU_4) together made up between 4.9% and 71.0% of all aboveground samples and 0.2% and 40.3% of all belowground samples. Color tones range from warm (orange) to cool (blue) to indicate the highest and lowest abundances. The value in each square is the percentage of the sample that is made up of that OTU. The lineage shows the taxonomic order for which each OTU has been classified. Each column is a single sample, the first letter in the sample name represents the treatments, control (C), heated (H), watered (W) and heated and watered (HW). Samples with at or above 16,912 and 290 sequences per samples were included in the heatmaps for shoot- and root samples respectively. Figure 3 Unweighted and Weighted UniFrac distances visualized by PCoA colored by site and treatment (Bottom left). (A) unweighted and (B) weighted UniFrac distance matrix for shoot samples. (C) unweighted and (D) weighted UniFrac distance matrix for root samples Points that are closer together have more similar communities.

We observed differences between shoot communities from seedlings in the forest and those from higher elevations. This was likely not do to provenance due to seedlings being from a common seed pool. Studies of soil bacterial communities in the high-alpine environment above Niwot Ridge show that these have significant spatial autocorrelation in community composition up to a distance of 240 m [58], and that there is high correlation between soil microbiota and plant abundance distribution [59]. Provided that these patterns hold true at lower elevations, we would expect the soil bacterial communities at treeline (3430 m) and alpine (3540 m) sites to be more similar to each other than to those in the forest site, with possible implications for endophyte community assembly.

Conclusions

We found that the most important factor structuring seedling endophyte communities to be tissue type (above vs below) similar to studies in *Arabidopisis* [52]. The communities were dominated by Betaproteobacteria specifically the family Oxalobacteriaceae which have been shown to increase biomass, protect against stress, fix nitrogen and protect against fungal pathogens [31,53-56]. Relative to adult communities seedlings were significantly more diverse, which has been previously reported by fungal communities in *Pinus taeda* (loblolly pine)[57]. This could be a difference in acquisition routes.

The climate treatments did not significantly shift the aboveground community at treeline, suggesting that it is relatively robust to environmental change. We saw a significant difference with heating in root samples when weighted UniFrac was used to measure the community dissimilarity between samples (but not unweighted UniFrac). This suggests that heating altered relative abundance of root bacteria without turnover in the identity of taxa, with potential consequences for community function. However, the relative abundance of the major OTUs, which we hypothesize may play a role in biotic stress protection, did not shift significantly with climate treatments, indicating that these associations are relatively robust to environmental change, potentially consisting of taxa that well adapted to or selected by the host

To conclude, our results do not exclude the possibility that bacterial endophytic microbiomes of forest tree seedlings can shift as a consequence of climate change, but suggest that local effects of climate change are small compared to site-level variation across an elevation gradient, at least in the first year of a seedling's life. Beneficial associations with bacteria such as those contributing pathogen defense may therefore be relatively robust to climate change, but seedling uphill migration could be constrained by lack of such associations in newly suitable habitat, in particular if beneficial endophytes are sourced from surrounding trees.

CITATIONS

1. Smith WK, Germino MJ, Hancock TE, Johnson DM. Another perspective on altitudinal limits of alpine timberlines. Tree Physiol. 2003;23: 1101–1112. 2. Reinhardt K, Castanha C, Germino MJ, Kueppers LM. Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine. Tree Physiol. 2011;31: 615-3. Moyes AB, Castanha C, Germino MJ, Kueppers LM. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia, 2012:171: 271–282.

4. Vandenkoornhuvse P. Quaiser A. Duhamel M. Le Van A. Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol. 2015:206: 1196–120 5. Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci. 2007;104 Suppl 1: 8627–8633. 6. Barrow JR, Lucero ME, Reves-Vera I, Havstad KM. Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol. 2008;1: 69–73

8. Germino MJ, Smith WK, Resor AC. Conifer seedling distribution and survival in an algine-treeline ecotone. Plant Ecol. 2002;16 9. Germino MJ, Smith WK. Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline. Plant. 1999;22: 407–415. 10. Johnson D, McCulloh K, Reinhardt K. The earliest stages of tree growth: development, physiology, and impacts of microclimate. In: Meinzer FC, Lachenbruch B, Dawson TE, eds Size- and age-related changes in tree structure and function. Dordrecht, the Netherlands: Springer Science + Business Media; 2011. pp. 65–87. 11. Oswald ET. Ferchau HA. Bacterial associations of coniferous mycorrhizae. Plant Soil. 1968:28: 187–192. 12. Rygiewicz PT, Bledsoe CS, Zasoski RJ. Effects of ectomycorrhizae and solution pH on [15N] ammonium uptake by coniferous seedlings. Can J For Res. 1984;14: 885–892.

13. Miller SL, McClean TM, Stanton NL. Mycorrhization, physiognomy, and first-year survivability of conifer seedlings following natural fire in Grand Teton National Park. Can J For Res. 1998;28. 14. Hasselquist N, Germino MJ, McGonigle T, Smith WK. Variability of Cenococcum colonization and its ecophysiological significance for young conifers at alpine-treeline. New Phytol. 2005;165: 867–873 15. Germino MJ, Hasselquist NJ, McGonigle T, Smith WK, Sheridan PP. Landscape- and age-based factors affecting fungal colonization of conifer seedling roots at the alpine tree line. Can J For Res. 2006;36: 16. Wagg C, Husband BC, Green DS, Massicotte HB, Peterson RL. Soil microbial communities from an elevational cline differ in their effect on conifer seedling growth. Plant Soil. 2011;340: 491–504 17. Nuñez MA, Horton TR, Simberloff D. Lack of belowground mutualisms hinders Pinaceae invasions. Ecology. 2009;90: 2352–2359. 18. Van der Putten WH, Macel M, Visser ME. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc B Biol Sci. 2010;365: 2025-2034 19. HilleRisLambers J. Harsch MA, Ettinger AK, Ford KR, Theobald EJ. How will biotic interactions influence climate change-induced range shifts? Ann N Y Acad Sci. 2013; 112–125.

20. Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? 21. Kazenel MR, Debban CL, Ranelli L, Hendricks WQ, Chung YA, Pendergast TH, et al. A mutualistic endophyte alters the niche dimensions of its host plant. AoB PLANTS. 2015;7: plv005 22. Kivlin SN, Emery SM, Rudgers JA. Fungal symbionts alter plant responses to global change. Am J Bot. 2013;100: 1445–1457 23. Afkhami ME, McIntyre PJ, Strauss SY. Mutualist-mediated effects on species' range limits across large geographic scales. Ecol Lett. 2014;17: 1265–127: 24. Lau JA, Lennon JT. Rapid responses of soil microorganisms improve plant fitness in novel environments. PNAS. 2012;109

26. Hasegawa S, Meguro A, Nishimura T, Kunoh H. Drought tolerance of tissue-cultured seedlings of mountain laurel (Kalmia latifolia L.) Induced by an endophytic actinomycete: I. Enhancement of osmotic pressure in leaf cells. Actinomycetologica. 2004;18: 43-47. 27. Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol. 2007;53: 1195–1202 28. Cruz-Martinez K, Suttle KB, Brodie EL, Power ME, Andersen GL, Banfield JF. Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland, ISME I, 2009:3: 738–744. 29. Marulanda A, Barea J-M, Azcón R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacteria effectiveness. J Plant Growth Regul. 2009;28: 115–124. 30. Yandigeri MS, Meena KK, Singh D, Malviva N, Singh DP, Solanki MK, et al. Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plan Growth Regul. 2012;68: 411–420. 31. Naveed M. Mitter B. Reichenauer TG. Wieczorek K. Sessitsch A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter s

32. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;48: 33. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488: 86–90 34. Johnston-Monje D, Mousa WK, Lazarovits G, Raizada MN. Impact of swapping soils on the endophytic bacterial communities of pre-domesticated, ancient and modern maize. BMC Plant Biol. 2014;14: 1-35. Johnston-Monje D, Raizada MN. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE. 2011;6: e20396 36. Moves AB, Kueppers LM, Pett-Ridge J, Carper DL, Vandehev N, O'Neil J, et al. Evidence for foliar endophytic nitrogen-fixation in a widely distributed subalpine conifer. New Phytol. 2015; In Press

37. Moyes AB, Germino MJ, Kueppers LM. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions. New Phytol. 38. Izumi H, Anderson IC, Killham K, Moore ERB. Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Can J Microbiol. 2008;54: 173–179. 39. Carrell AA, Frank AC. Pinus flexilis and Piceae engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front Microbiol. 2014;5 40. Chelius MK. Triplett EW. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol. 2001;41: 252–263 41. Hanshew AS, Mason CJ, Raffa KF, Currie CR. Minimization of chloroplast contamination in 16S rRNA gene pyrosequencing of insect herbivore bacterial communities. J Microbiol Methods. 2013;95: 1–7 42. Redford AJ. Bowers RM. Knight R. Linhart Y. Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010:1. 43. Jiao JY, Wang HX, Zeng Y, Shen YM. Enrichment for microbes living in association with plant tissues. J Appl Microbiol. 2006;100: 830–837

44. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010:7: 335–336. 45. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10: 996–998. 46. Aronesty E. Command-line tools for processing biological sequencing data. Ea-Utils. 2011: Available: http://code.google.com/p/ea-util 47. Bokulich NA. Subramanian S. Faith JJ. Gevers D. Gordon JJ. Knight R. et al. Quality-filtering yastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2012:10: 57-5 48. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;7/ 49. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26: 266–267 50. Price MN. Dehal PS. Arkin AP. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009:26: 1641–1650.

52. Bodenhausen N, Horton MW, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. Ibekwe AM, editor. PLoS ONE. 2013;8: e56329 53. Estrada P. Mavingui P. Cournover B. Fontaine F, Balandreau J, Caballero-Mellado J. A N 2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can J Microbiol. 2002;48 54. Anandham R, Gandhi PI, Madhaiyan M, Sa T. Potential plant growth promoting traits and bioacidulation of rock phosphate by thiosulfate oxidizing bacteria isolated from crop plants. J Basic Microbio 2008;48: 439-447. 55. Coutinho BG, Licastro D, Mendonca-Previato L, Camara M, Venturi V. Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Mol Plant Microbe Interact. 2015;28: 10–21 56. Opelt K. Chobot V. Hadacek F. Schönmann S. Eberl L. Berg G. Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ Microbiol. 2007;9: 2795-

57. Oono R, Lefèvre E, Simha A, Lutzoni F. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biol. 2015;119: 917–928 58. King AJ, Freeman KR, McCormick KF, Lynch RC, Lozupone C, Knight R, et al. Biogeography and habitat modelling of high-alpine bacteria. Nat Commun. 2010;1: 1–6. 59. King AJ, Farrer EC, Suding KN, Schmidt SK. Co-occurrence patterns of plants and soil bacteria in the high-alpine subnival zone track environmental harshness. Front Microbiol. 2012;

ACKNOWLEDGEMENTS

This research was supported, by National Science Foundation grant DEB-1442348 to ACF and LMK, an in part, by the Office of Science (BER), US Department of Energy. We thank the Mountain Research Station and Niwot Ridge LTER at the University of Colorado, Boulder, for logistical support. Thanks to E. Brown, C. Castanha for field assistance.