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INTRODUCTION

Climate change is predicted to shift the distributions of forest trees upward, moving the current forest boundary into the alpine zone. However, upward elevational
shifts depend on the ability of seedlings to establish from seed. In the alpine-treeline ecotone, climate change could enhance establishment by reducing cold stress,
while at lower elevations, climate change could exacerbate heat and drought stress impairing seedling recruitment. The ability of seedlings to survive depends on
interactions between genetic and environmental controls on seedling physiology [1-3]. Additionally, though rarely considered, seedling interactions with microbes in
the soil, as well as in and on seedling tissues, could influence seedling establishment. Increasingly recognized as a dynamic constituent of plants [4], the plant
microbiome has the potential to buffer plants against climate stressors. Microbial symbioses can accelerate host adaptation to different climates and stressful
environments [5,6], potentially promoting climate-induced expansion at host range limits. Alternatively, a lack of microbial taxa resident in newly suitable habitat or
climate change in existing habitat could disrupt adapted host-microbe associations, thereby limiting expansion and persistence [7]. Subalpine conifer seedlings are
exposed to extremes of temperature, humidity, radiation, and soil moisture [8—10], possibly assisted by the native seedling microbiome, including mycorrhizal fungi
[11-16]. With climate change, new and existing seedling-microbe associations could contribute to establishment beyond the current range, as well as to seedling
recruitment under warmer and dryer conditions within the current range. On the other hand, seedling-microbe associations could constrain uphill migration of forest
trees if host and microbes differ enough in their dispersal capacity or response to climatic change [7,17-21].

The plant microbiome consists of bacteria and fungi in the rhizosphere, phyllosphere, and endosphere. Given their different roles, dispersal capacities, and degrees of
host specialization, members of the microbiome will likely respond independently to climate change, and differ in their capacity to buffer their hosts against associated
stressors. Recent work on grasses demonstrates that fungal endophytes can mediate plant response to climate change [22] and broaden the geographic niche of their
host [23]. Additionally, rapid changes in belowground fungal and bacterial communities has been shown to influence plant response to drought stress [24], suggesting
a potential role for soil microbes in mediating plant response to climate change. The role of the bacterial endophyte community in mediating plant response to climate
change is less clear [25], but like their fungal counterparts bacterial endophytes can buffer plants under stress [26—31]. Endophytes of adult limber pine, a subalpine
conifer that is widespread in the Western United States, are thought to fix atmospheric nitrogen (N), which they potentially share with the host [36]. Little is known
about the endophytic bacteria throughout a tree's lifetime, and the function of the endophytic community in seedlings may differ from that in adults. To better
understand the potential functional roles of endophytes at the earliest tree life stages, we characterized the above- and belowground bacterial endophyte
communities in limber pine seedlings establishing in in situ common gardens within and beyond the elevation range of subalpine forest.

AIMS

1. To gain a better understanding of the endophyte community in pine seedlings, including its
potential functional role
2. To understand how the endophyte community varies across sites across an elevation and
canopy gradient
3. To understand whether the endophyte community is sensitive to experimental climate change
within the alpine-treeline ecotone
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Conclusions

We found that the most important factor structuring seedling endophyte communities to be tissue
type (above vs below) similar to studies in Arabidopisis [52]. The communities were dominated by
Betaproteobacteria specifically the family Oxalobacteriaceae which have been shown to increase
biomass, protect against stress, fix nitrogen and protect against fungal pathogens [31,53-56]. Relative
to adult communities seedlings were significantly more diverse, which has been previously reported by
fungal communities in Pinus taeda (loblolly pine)[57]. This could be a difference in acquisition routes.

We observed differences between shoot communities from seedlings in the forest and those from
higher elevations. This was likely not do to provenance due to seedlings being from a common seed
pool. Studies of soil bacterial communities in the high-alpine environment above Niwot Ridge show
that these have significant spatial autocorrelation in community composition up to a distance of 240 m
[58], and that there is high correlation between soil microbiota and plant abundance distribution [59].
Provided that these patterns hold true at lower elevations, we would expect the soil bacterial
communities at treeline (3430 m) and alpine (3540 m) sites to be more similar to each other than to
those in the forest site, with possible implications for endophyte community assembly.

The climate treatments did not significantly shift the aboveground community at treeline, suggesting
that it is relatively robust to environmental change. We saw a significant difference with heating in
root samples when weighted UniFrac was used to measure the community dissimilarity between
samples (but not unweighted UniFrac). This suggests that heating altered relative abundance of root
bacteria without turnover in the identity of taxa, with potential consequences for community function.
However, the relative abundance of the major OTUs, which we hypothesize may play a role in biotic
stress protection, did not shift significantly with climate treatments, indicating that these associations
are relatively robust to environmental change, potentially consisting of taxa that well adapted to or
selected by the host .

To conclude, our results do not exclude the possibility that bacterial endophytic microbiomes of forest
tree seedlings can shift as a consequence of climate change, but suggest that local effects of climate
change are small compared to site-level variation across an elevation gradient, at least in the first year
of a seedling's life. Beneficial associations with bacteria such as those contributing pathogen defense
may therefore be relatively robust to climate change, but seedling uphill migration could be
constrained by lack of such associations in newly suitable habitat, in particular if beneficial endophytes
are sourced from surrounding trees.

RESULTS
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Fig. 3 Unweighted and Weighted UniFrac distances visualized by PCoA
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Fig. 2 Heatmap of the top 10 OTUs for each tissue type
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Figure 1 Unweighted and weighted UniFrac distances visualized by PCoA colored by tissue type (Top left). Samples clustered by tissue
type with aboveground tissues forming one cluster and belowground tissues forming another cluster. This was significant when looking at
both (A) unweighted distances which only takes into account presence/absence (ANOSIM: R-statistic=0.6503 P-value=0.001 and
PERMANOVA: Pseudo-F=8.9379 P-value=0.001) and (B) weighted distances which takes into account relative abundances of the species
(ANOSIM: R-statistic=0.3520 P-value=0.001 and PERMANOVA: Pseudo-F=11.8849 P-value=0.001) .

Figure 2 Heatmap showing the 10 most abundant OTUs and their relative abundances as percentages of all the 16S rRNA gene sequences
in each sample. (Top right). (A) aboveground and (B) belowground tissues types. Both above- and belowground tissues were dominated by
Betaproteobacteria, 58.7% and 32.7% respectively. Belowground tissues had a larger portion of the endophytic community comprised of
Deltaproteobacteria (7.0% vs. 1.1%) and Gammaproteobacteria (12.3% vs. 2.7%). The top two OTUs (OTU_1 and OTU_4) together made up
between 4.9% and 71.0% of all aboveground samples and 0.2% and 40.3% of all belowground samples. Color tones range from warm
(orange) to cool (blue) to indicate the highest and lowest abundances. The value in each square is the percentage of the sample that is
made up of that OTU. The lineage shows the taxonomic order for which each OTU has been classified. Each column is a single sample, the
first letter in the sample name represents the treatments, control (C), heated (H), watered (W) and heated and watered (HW). Samples with
at or above 16,912 and 290 sequences per samples were included in the heatmaps for shoot- and root samples respectively.

Figure 3 Unweighted and Weighted UniFrac distances visualized by PCoA colored by site and treatment (Bottom left). (A) unweighted and
(B) weighted UniFrac distance matrix for shoot samples. (C) unweighted and (D) weighted UniFrac distance matrix for root samples Points
that are closer together have more similar communities.
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