Background
High severity wildfires threaten fens by decreasing biodiversity, providing a pathway for introduction of invasive species, and increasing instability of the ecosystem. However, managed wildfire can increase downstream water availability, which may result in expansion of a fen over time. On the other hand, fire suppression may enable woody plant invasion and desiccation of meadow margins through evapotranspiration. Despite this, few studies have measured available groundwater in fens following watershed-level fires, and in situ data is lacking to concretely link evapotranspiration, groundwater availability, and fen condition.

In 2015, Stillwater conducted botanical surveys of fens in the Plumas National Forest in two locations: on the northern shore of Bucks Lake and at Grassy Lakes. In 2021, the Dixie Fire burned 963,309 acres across the Plumas and Lassen National Forests, including in and around the fens studied during 2015. On the southern edge of the fire perimeter, the road near the Bucks Lake fens became a control line for the fire as it burned from the dry conifer forest into these fens. In 2022, Stillwater was able to return to the area using internal grant funding aimed at bolstering scientific studies to get a first look at the post-fire condition of the fens. We conducted vegetation surveys and placed piezometers in three fens, yielding 4 study sites.

Our study will set a baseline for future post-fire recovery studies in the area, and results may help guide management of fire and woody plant invasion in fen ecosystems.

Methods
2015 SURVEYS
- Comprehensive botanical surveys
- Vegetation mapping and classification
- Belt vegetation transects (Waggletail)
- Woody stem density and tree diameter measurements (Waggletail)

2022 SURVEYS
- Line-point intercept transects along piezometer gradient
- Conifer encroachment within 1 meter of low-point intercept transect
- Belt vegetation transects at each piezometer and in upslope area
- Fen boundary demarcation

Hypotheses
- Groundwater in the fen and/or adjacent uplands is positively correlated with the severity of wildfire.
- Severe wildfire in mid-elevation (5,000–6,500 feet) fens reduces plant diversity and conifer encroachment, and increases abundance of non-native plants.

Wildlife improves fen condition and/or size, as evidenced by hydrologic (e.g., depth to water table, evidence of hydrologic alteration), vegetation (e.g., cover of peat-forming and wetland plant species), and soil characteristics (e.g., cover of bare ground, signs of erosion or deposition).

Preliminary Results
GROUNDWATER
- Negative depth to water at the downslope and mid-slope piezometers in the low + medium severity sites = more standing water
- Higher recession rate (rate at which the groundwater is receding) at the low severity site = increased evapotranspiration

PLANTS
- Invasive woolly mullein (Verbascum thapsus) was observed on newly deposited silt in Waggletail fen.
- Species richness is similar across all sites = future study needed to assess trends over time.
- Conifer encroachment is highest in the high severity site = no reduction in encroachment due to fire, but could management play a role?

Next Steps for Analysis
- In-depth comparison of 2015 and 2022 data, where available.
- Link groundwater recession rates to evapotranspiration and vegetation transect data to understand linkage between vegetation, burn severity, and available groundwater.
- Future studies? What will species diversity, conifer encroachment, and groundwater availability look like 5 years post-fire? After 10? How can forest management post-Dixie Fire and pre-next season’s fire contribute to the preservation of this ecosystem?

Acknowledgements
Thank you to Stillwater Sciences for financial support as part of our Strategic Science Initiative, which funds internal staff to conduct scientific research with a portion of company profits. We would also like to thank U.S. Forest Service staff (Liz Belsher-Howe, Kelby Gardiner, Kyle Merriam, and Kurt Sable) for allowing access and facilitating piezometer installation as well as PG&E (Shannon Johnson) for access coordination and 2015 data sharing from the Bucks Creek Hydroelectric Project relicensing studies. Special thanks to Sanjana Roy for her diligent work creating this poster!