The relationship between ploidy, sex chromosomes, and sexual condition in Syntrichia

Syntrichia

- A diverse genus of mosses, with ~ 100 named species
- A large number of dryland specialists
- Low rates of sexual reproduction, extreme female population bias common

Moss Reproduction

Presentation Outline

Presentation Outline

Moss Reproduction

Presentation Outline

Moss Reproduction
Sex Chromosomes

Presentation Outline

Moss Reproduction
(\%) Sex Chromosomes
(4ᄃ) Polyploid Phylogenetics

Presentation Outline

Moss Reproduction(\%) Sex Chromosomes
(4ᄃ) Polyploid Phylogenetics
(P) Future Research

Mosses are not like other plants

Moss Reproduction

Mosses are not like other plants

- Many species exhibit vegetative desiccation tolerance (Proctor et al. 2007; Stark 2017)

Moss Reproduction

Mosses are not like other plants

- Many species exhibit vegetative desiccation tolerance (Proctor et al. 2007; Stark 2017)
- Haploid-dominant, free-living gametophyte

Mosses are not like other plants

- Many species exhibit vegetative desiccation tolerance (Proctor et al. 2007; Stark 2017)
- Haploid-dominant, free-living gametophyte
- Spore-bearing and reproduce with swimming sperm

Moss Reproduction

Most moss species ($\sim 60 \%$) produce unisexual gametophytes

Moss Reproduction

Bisexual gametophytes produce both sperm and egg

Moss Reproduction

Bisexual gametophytes produce both sperm and egg

Many bisexual species can self, resulting in a sporophyte that is homozygous at all loci and spores that are clones of the parent

BISEXUAL

Evolutionary transitions in sexual condition

- McDaniel (2013) et al. found least 133 transitions between unisexuality and bisexuality in mosses
- Rate of bisexuality to unisexuality was $2 x$ higher than the reverse
- Net diversification rates higher in bisexual lineages

Moss Reproduction

Sex determination

 occurs in the haploid gametophyte stage via a single sex chromosome

Sex determination

 occurs in the haploid gametophyte stage via a single sex chromosome

Sex determination occurs in the haploid gametophyte stage via a single sex chromosome

BISEXUAL

Sex Chromosomes

How does bisexuality evolve?

Hypothesis

Hypothesis

BISEXUAL

UV?

Hypothesis

Allopolyploids have both maternal and paternal progenitors, so are expected to have both U and V chromosomes

Hypothesis

Allopolyploids have both maternal and paternal progenitors, so are expected to have both U and V chromosomes

Only 1 copy of a sex chromosome needed for sexual function

Hypothesis

Allopolyploids have both maternal and paternal progenitors, so are expected to have both U and V chromosomes

Only 1 copy of a sex chromosome needed for sexual function

UV gametophytes may be bisexual

Inferring sex chromosomes

Inferring sex chromosomes

- Genome skimming for 80 accessions of Syntrichia and close relatives
- Mapped reads to two reference genomes:

Inferring sex chromosomes

- Genome skimming for 80 accessions of Syntrichia and close relatives
- Mapped reads to two reference genomes:
- Female (U) S. caninervis (Silva et al. 2020)
- Male (V) S. ruralis (Zhang et al. in press)
- Counted reads that differentially mapped to U and V

Inferring sex chromosomes

Inferring sex chromosomes

Inferring sex chromosomes

- > 75% of reads preferentially mapping to one chromosome to call it
- Read mapping ratios of $40 \%-60 \%$ called UV

Inferring sex chromosomes

- > 75% of reads preferentially mapping to one chromosome to call it
- Read mapping ratios of $40 \%-60 \%$ called UV

Inferring sex chromosomes

- > 75% of reads preferentially mapping to one chromosome to call it
- Read mapping ratios of $40 \%-60 \%$ called UV
- Read mapping ratios of 60\%-75\% considered ambiguous and not called

Inferring sex chromosomes

- > 75% of reads preferentially mapping to one chromosome to call it
- Read mapping ratios of $40 \%-60 \%$ called UV
- Read mapping ratios of 60\%-75\% considered ambiguous and not called

Association between
 bisexuality and sex chromosomes?

Syntrichia caninervis Syntrichia pseudohandelii Syntrichia rigescens Syntrichia subpapillosa Syntrichia calcicola Syntrichia montana Syntrichia echinata Syntrichia amphidiacea Syntrichia ammonsiana Syntrichia papillosissima Syntrichia subpapillosissima

Syntrichia cainii Syntrichia fragilis Syntrichia latifolia Syntrichia norvegica

Syntrichia bartramii Syntrichia sucrosa Syntrichia campestris Willia austroleucophaea Syntrichia virescens Syntrichia lithophila Syntrichia buchtienii Willia brachychaete Syntrichia breviseta Syntrichia sinensis Syntrichia geheebiaeopsis Syntrichia submontana Syntrichia laevipila Syntrichia christophei Syntrichia obtusissima Syntrichia anderssonii Syntrichia percarnosa Syntrichia intermedia Syntrichia princeps Syntrichia norrisii Syntrichia antarctica

UV

Association between

bisexuality and sexchromosomes?

- Bisexual species more commonly have UV and V chromosomes
- Fisher's Exact Test $P=1.004 \times 10^{-6}$

Association between bisexuality and sex chromosomes?

- Bisexual species more commonly have UV and V chromosomes
- Fisher's Exact Test $P=1.004 \times 10^{-6}$
- Doesn't account for phylogenetic non-independence!

Association between bisexuality and sex chromosomes?

- Bisexual species more commonly have UV and V chromosomes
- Fisher's Exact Test $P=1.004 \times 10^{-6}$
- Doesn't account for phylogenetic non-independence!

(4ᄃ) Polyploid Phylogenetics

Possible polyploidy in Syntrichia

- Polyploidy (having 2 or more genomes in an individual) is common in mosses, and polyploid moss species tend to be bisexual (Crawford et al 2009, and refs therein)

Polyploid Phylogenetics

Possible polyploidy in Syntrichia

- Polyploidy (having 2 or more genomes in an individual) is common in mosses, and polyploid moss species tend to be bisexual (Crawford et al 2009, and refs therein)
- Several notoriously difficult species complexes in Syntrichia

Polyploid Phylogenetics

Possible polyploidy in Syntrichia

- Polyploidy (having 2 or more genomes in an individual) is common in mosses, and polyploid moss species tend to be bisexual (Crawford et al 2009, and refs therein)
- Several notoriously difficult species complexes in Syntrichia
- Many intra-specific chromosome series in the genus ($\mathrm{n}=\sim 12,24,36$, etc.; Fritsch 1991)

Polyploid Phylogenetics

Polyploid Phylogenetics

Hybridization +

Polyploidization
= Allopolyploidy

Hybridization +

Polyploidization
= Allopolyploidy

Hybridization +
Polyploidization
= Allopolyploidy

Multree

1 tip per
subgenome

Hybridization +
Polyploidization
= Allopolyploidy

Multree

1 tip per
subgenome

Hybridization +
Polyploidization
= Allopolyploidy

Multree

1 tip per
subgenome

Network

1 tip per species/ individual

Hybridization +
Polyploidization
= Allopolyploidy

Haploid 2

Multree

1 tip per
subgenome

Network

1 tip per species/ individual

Approach

Polyploid Phylogenetics

Approach

- HybSeq/Target Capture; GoFlag probe set (Breinholt et al. 2021)
- 8o accessions of Syntrichia + outgroups

Polyploid Phylogenetics

Approach

- HybSeq/Target Capture; GoFlag probe set (Breinholt et al. 2021)
- 8o accessions of Syntrichia + outgroups
- de novo assembly of raw reads with strict parameters in SPAdes (Bankevich et al. 2012)

Approach

- HybSeq/Target Capture; GoFlag probe set (Breinholt et al. 2021)
- 8o accessions of Syntrichia + outgroups
- de novo assembly of raw reads with strict parameters in SPAdes (Bankevich et al. 2012)
- Manual selection and curation of alignments

Approach

- HybSeq/Target Capture; GoFlag probe set (Breinholt et al. 2021)
- 8o accessions of Syntrichia + outgroups
- de novo assembly of raw reads with strict parameters in SPAdes (Bankevich et al. 2012)
- Manual selection and curation of alignments
- Identified 8 potential polyploids to investigate

Approach

- HybSeq/Target Capture; GoFlag probe set (Breinholt et al. 2021)
- 8o accessions of Syntrichia + outgroups
- de novo assembly of raw reads with strict parameters in SPAdes (Bankevich et al. 2012)
- Manual selection and curation of alignments
- Identified 8 potential polyploids to investigate
- Based on presence of $>\mathbf{1}$ sequence per locus

Approach

- HybSeq/Target Capture; GoFlag probe set (Breinholt et al. 2021)
- 8o accessions of Syntrichia + outgroups
- de novo assembly of raw reads with strict parameters in SPAdes (Bankevich et al. 2012)
- Manual selection and curation of alignments
- Identified 8 potential polyploids to investigate
- Based on presence of $>\mathbf{1}$ sequence per locus
- Phase gene copies and build tree with hOMOLOGIZER (Freyman et al. 2023) in RevBayes (Höhna et al. 2016)

Polyploid Phylogenetics

Polyploid Phylogenetics

Polyploid Phylogenetics

Polyploid Phylogenetics

(2)

Polyploid Phylogenetics

S. Iaevipila

$$
\mathrm{n}=12,15,26
$$

(Patel et al., 2021)

- A species complex
- Worldwide distribution, but primarily in the N . Hemisphere
- Bark epiphyte
- Bisexual; some populations reported to be unisexual

S. obtusissima

$$
\mathrm{n}=?
$$

- Southwest US and MexicanAndean disjunction
- Bisexual; some populations are reported to be unisexual

Polyploid Phylogenetics

Polyploid Phylogenetics

S. princeps

$$
\mathrm{n}=12,24,26,28,36
$$

(Patel et al., 2021)

- A species complex
- Worldwide distribution, primarily in N . Hemisphere
- Bisexual

Polyploid Phylogenetics

Conclusions

There seems to be something going on!

Conclusions

There seems to be something going on!

8 suspected polyploids were tested in polyploid phylogenetic framework:

- All 8 appear to be allopolyploid

Conclusions

There seems to be something going on!

8 suspected polyploids were tested in polyploid phylogenetic framework:

- All 8 appear to be allopolyploid
- Of those, 5 were bisexual and have UV sex chromosomes

Conclusions

There seems to be something going on!

8 suspected polyploids were tested in polyploid phylogenetic framework:

- All 8 appear to be allopolyploid
- Of those, 5 were bisexual $\mathbf{\Delta}$ and have UV sex chromosomes
- One is bisexual \mathbf{A} with only a V sex chromosome
S. sinensis
S. submontana
S. obtusissima
S. rubella
S. laevipila

Tortula inermis
S. princeps
S. glacialis (bisexual, unknown
chromosomes)

Conclusions

There seems to be something going on!

8 suspected polyploids were tested in polyploid phylogenetic framework:

- All 8 appear to be allopolyploid
- Of those, 5 were bisexual $\mathbf{\Delta}$ and have UV sex chromosomes
- One is bisexual $\mathbf{\Delta}$ with only a V sex chromosome
S. sinensis
S. submontana
S. obtusissima
S. rubella
S. laevipila

Tortula inermis
S. princeps
S. glacialis (bisexual, unknown
chromosomes)
S. rubella (unknown sexual condition and unknown chromosomes)
(P) Future Research

Next Steps

Next Steps

- Check and validate assembly pipeline for accuracy with allopolyploids of known ancestry
- Investigate more potential polyploids
- Chromosome and sexual condition correlation analyses in phylogenetic network framework

Join my lab! MEEPLab Moss Eco-Evo-Physio

The MEEP Lab will be opening THIS MONTH at San Francisco State University.

Now recruiting undergraduate and master's students to start Fall 2024.

Spread the word! www.meep-lab.com

Ecology

Genomics

Acknowledgments

- Thank you to Northern California Botanists for inviting me to speak at this symposium
- My collaborators; my current and past advisors Carl Rothfels, Rebecca Dikow, and Brent Mishler; and my support systems in the Mishler, Dikow, and Rothfels Labs.
- NSF CAREER Award \# 204413 (to C. Rothfels), The Smithsonian Data Science Lab Biodiversity Genomics Fellowship, NSF Dimensions of Biodiversity grants \#1638956 and \#1638972.

Thank you

