Lessons learned from long-term restoration outcomes of California coastal grasslands

Justin.Luong@Humboldt.edu

Justin Luong*, Daniel Press, Karen Holl Cal Poly Humboldt 2024 NCB Symposium

California coastal grasslands

Unique summertime fog

Dominated by perennials and annual forbs

High species diversity

Ford and Hayes, 2007; Keeler-Wolf et al. 2007

⊠ Justin.Luong@Humboldt.edu

_3

Perennialization = increased dominance & abundance of perennial species

Lesage, Howard, Holl 2018 Holl, Luong, Brancalion 2022

Justin.Luong@Humboldt.edu \bowtie @JustinCLuong

Variability in restoration outcomes

- Grassland restoration outcomes are relatively unknown
- For few projects resurveyed, outcomes are variable
- Lack of funding leads to limitations during initial site assessments

Suding 2011; Adler et al. 2013; Brudvig et al. 2017

- ⊠ Justin.Luong@Humboldt.edu
- 🍠 @JustinCLuong

Restoration management

- Management practices can greatly differ depending on agency
- Practices may differ because project goals differ
- There are limited sources of funding for restoration

☑ Justin.Luong@Humboldt.edu

Holl and Howarth 2000; Clewell and Aronson 2006 Rowe 2010; Homewood et al. 2001

☑ Justin.Luong@Humboldt.edu

🔰 @JustinCLuong

Research Questions

- 1. Does coastal grassland restoration meet project-based goals and a standard performance metric?
- 2. Is native cover related to project age?
- 3. What are the biggest barriers to achieving restoration goals?
- 4. How does funding and maintenance influence outcomes?

Restoration project selection

- 1000-km N-S gradient
- Identified 37 projects (of 48 possible)

Selection Criteria:

- 1. At least 3 years postplanting or -seeding
- 2. Size <u>></u>1 acre
- 3. Coastal grassland
- ⊠ Justin.Luong@Humboldt.edu

Field Surveys (2019-2021)

- Used 0.25 m² quadrats every 5-m along 50-m transects
- ₹3 16 transects, scaled to site size (1-32 acre)
- Estimated absolute cover of all plants
- Collected 3 soil samples per transect in 2019
- ⊠ Justin.Luong@Humboldt.edu

Semi-structured interviews and Document analysis

Reviewed project documents prior to vegetation surveys

• Projects with documents = 63%

- Interviewed one or more practitioner from each site
- Focused on resources and barriers to achieving goals, and implementation strategies
- ⊠ Justin.Luong@Humboldt.edu

			3 / 60	N	\mathbb{Q}	Θ	\oplus	75%	•	J₽ ₽	→	F
	1.5	Regula	tory Framework	 Californ 	uia Coast	al Comm	ission				5	
2.	Existi	ng Cond	itions								11	
	2.1	Plant C	Communities/Ha	bitat Type:	s Present						11	
	2.2	Special	l-status Species.								15	
3.	Habita	at Restor	ration Plan								16	
	3.1	Site Re	emediation								16	
		3.1.1	Limit Site Acc	ess							16	
		3.1.2	Reduce Erosion	n into Dev	ereux Slo	ough					25	
		3.1.3	Eliminate Non-	native Inv	asive Pla	ints					27	
		3.1.4	Remove Trash	28								
		3.1.5	Plant Material	Salvage ar	id Propag	gation					28	
	3.2	Plantin	g and Restoratio	n							28	
		3.2.1	Create New Se	asonal We	tland Ar	eas					28	
		3.2.2	Enhance Wetla	nd Buffer	Zones						29	
		3.2.3	Revegetate Erc	sion Repa	ir Areas	and Abar	idoned T	rails			29	
		3.2.4	Enhance and E	xpand Nat	ive Gras	sland Are	as				29	
		3.2.5	Enhance and E	xpand Coa	astal Seru	ib and Co	astal Blu	iff Scrub /	Areas		29	
	3.3	Restora	ation Planting Pl	an							29	
		3.3.1	Salt Marsh We	tland Habi	itat Areas						30	
		3.3.2	Seasonal Wetla	nd Habita	t Areas						31	
		3.3.3	Riparian Wetla	nd / Scrub	Habitat	Areas					31	
		3.3.4	Coastal Upland	Areas							32	
		3.3.5	Coastal Scrub I	33								
		3.3.6	Native Grassla	nd Habitat	Areas						33	
		3.3.7	Coastal Bluff S	crub							33	
4.	Planti	ng and (Grading Plans a	nd Specif	ications						34	
	4.1	Genera	1 Site Preparatio	n							34	
		4.1.1	Protection duri	ng Constri	action						34	
	4.2	Restora	ation Planting M	ethods							37	
		4.2.1	Plugs and Line	rs							37	
		4.2.2	Willow Cutting	şs							37	
		4.2.3	Planting from (Container	Stock						38	
		4.2.4	Tarplant Seedin	1g							38	
5.	Irriga	tion Pla	n								38	
6.	Perma	nent Fe	ncing and Signa	nge							39	
7	Const	ruction 1	Inspection and	Monitorin	φ						39	
•	Maint										20	
0.	8 1	Mainte	nance Measures								30	
	82	Weed	Control After Fe	tablishmer	nt						42	
•	Mante	weed t	connorrance Es	aonamiei								
9.	MONIC	oring Pl	an								44	

Surveyed projects were mostly voluntary

 \searrow

Barriers to achieving restoration goals

Invasive species management =
100%

- Funding levels = 84%
- Sourcing appropriate and sufficient plant material* = 34%

Restoration is largely successful at reaching project goals Standard performance metric outcomes

Standard performance metric:

25% native cover and 6 native species after 5 years

Project-based goals:

Varied <u>directional</u> goals, focused on increasing native cover or decreasing non-native cover or erosion

Justin.Luong@Humboldt.edu

Plant cover is relatively stable with project

age [∎] Native cover range = 13% to 79%

In the second secon

Non-native competition strongly impacts restoration efforts

Native species richness per hectare is negatively associated nonnative plant cover

Regional biotic homogenization

♥ 88% of projects use species because they survive better or grow faster

	N1	N2	N3	N4	N5	N6	N7	N8	N9	N10	N11	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	S1	S2
Stipa pulchra (69%)	х	х	Х	Х	х	х	х	х	х			Х	х	х				Х	Х	х	х	Х	Х	Х	Х		Х	x
Elymus glaucus (59%)	х	х	Х	х	х	х	х	х	х			х	х	х				х		х	х		х	х	х	Х		
Bromus carinatus (50%)	х	х	х	х	х	х	х	х	х						х	Х	Х	х	х				х	х				
(50%) Hordeum brachyantherum (44%) Festuca rubra										х	х	х	х	x						х	х	х	х	х	х	х	х	x
Festuca rubra (31%)			Х	х	х	х	х	х	х						х	Х	Х											
Achillea millefolium (22%)			х		х	х	х	х	х																	х		
Danthonia californica* (22%)	х	х	Х	х	х	х	х	х	х	х	х																	
Deschampsia caespitosa (17%)	х	x		х						х	х																	

SubstincLuong 🖂 Justin.Luong@humboldt.edu

Holl, Luong, Brancalion 2022; Lesage, Howard and Holl 2018

Financial cost has no direct effect on plant metrics, but higher maintenance intensity improve biodiversity

Using more species can counter homogenization but is associated with greater costs

⊠ jluong4@ucsc.edu

🔰 @JustinCLuong

Summary: Grassland restoration is largely successful

Successful at achieving projectbased goals and standard metric

Invasive species limit success

Projects indicate that they would have done more if possible

☑ Justin.Luong@Humboldt.edu *@JustinCLuong*

Summary: Obstacles to increasing regional diversity

- Difficulty in sourcing appropriate plant material and using new species
- Risk aversion in achieving restoration goals

☑ Justin.Luong@Humboldt.edu *OJustinCLuong*

Lesage, Press and Holl 2020

Survey for Formation of Grassland Restoration Network

Acknowledgements

For their contributions or input:

Maria Alvarez, John Anderson, Teri Jo Barber, Wayne Chapman, Dr. Weixin Cheng, Emiko Condenso, Brock Dolman, Dash Dunkell, Josh Fodor, Dr. Grey Hayes, Kim Hayes, Valerie Haley, Lisa Hintz, Holl-lab group, Hallie Holmes, Beth Howard, Marie Jones, John Kelly, Kelly Kephart, Laurie Koteen, Dr. Michael Loik, Loik-lab group, Kathy Lyons, Nathalie Martin, Hugh McGee, Maggie Perry, Jonathan Pilch, Press-lab group Lewis Reed, Robert Stephens, Dr. Lisa Stratton, Dr. Mark Stromberg, Dr. Katie Suding, Janine Tan, Beau Tindall, Patrick Turner, Roxana Valentino, Níls Warnock, Barbara Wechsberg, Jim Jensen, Emma Wheeler, Jennifer Wheeler, Veronica Yates, Dr. Kai Zhu

Volunteers and Interns:

Jess Fan Brown, Hallie Holmes, Juan Carlos Moso, Owen Taffe, Graeme Tanaka, Zach Toledo, Jane Weichert, Justin Xie, Nathan Zhu

UNIVERSITY OF CALIFORNIA

alitornia

rasslands

sociation

For their generous funding support:

- **UCSC** Jean H. Langenheim Fellowship in **Ecology and Evolution**
- Golden Gate National Recreational Area
- Griswold Fellowship
- **VICSC Hardman Native Plant Award**
- Northern California Botanists
- UCSB Coastal Fund
- California Native Plant Society
- California Native Grassland Association

NATIVE PLANT

SOCIETY

Thank You

CALIFORNIA COASTAL GRASSLAND RESTORATION E is Successful E

QR CODE for GRASS-NET Survey

Happy to take any questions

Contact Info:

Justin.Luong@humboldt.edu

Cal Poly Humboldt – Rangeland Management

y@JustinCLuong

QR CODE for free PDF->

