Vegetation Trends and Cycles in the Fire-Prone Landscapes of Lake, Napa and Sonoma Counties

CALFIRE grant 19-FH-LNU-086

Thorne Environmental Landscape Analysis

STUDY AREAS

- Where communities and/or natural resources are at risk
- Where long-term vegetation and fire records are available

c. 1870 - 2020

125,000 acres / 190 sq. mi.

LAKE NAPA EAST SONOMA-NAPA SONOMA WEST

Table 1. Study Area Summary Characteristics					
NAME	HUMAN IMPACTS	RECENT LARGE WILDFIRES	VEGETATION (≥2%, in order of abundance)		
Napa East	Vineyards Rural development 16% footprint	Atlas fire 2017 Atlas fire 1981 Atlas fire 1965	Hardwoods Chaparral Grassland 2016		
Sonoma- Napa	Vineyards Rural development 10% footprint	Nunns fire 2017 Nunns fire 1964	Hardwoods Conifers Chaparral Grasslands		
Sonoma West	Past timber harvest Rural development 6% footprint	Walbridge fire 2020	2013/2016 Conifers Hardwoods Grassland Chaparral 2013		
Lake	Past timber harvest Rural development 5% footprint	Valley fire 2015	Conifers Hardwoods Chaparral Grassland 1993		

KEY QUESTIONS

How have vegetation patterns changed over time?

What is the history and pattern of fire on the landscape?

FIRE

What is the relationship between vegetation, fire, and people?

What do the results suggest for:

- Improving ecological health?
- $\,\circ\,$ Lowering the chance of catastrophic fire?
- Maximizing C sequestration and minimizing emissions?

SOURCES

INDIGENOUS WISDOM

Clint McKay (Wappo, Pomo, Wintun) Chair, Native Advisory Council, Pepperwood Preserve

Cultural burning at Pepperwood

The difference between cultural and controlled or prescriptive burning?

It comes down to who it's intended to benefit.

Just human beings?

Or all the living things on the land?

"We consider fire to be a member of the community, one who is far wiser and more powerful than we are."

> --Sara Moncada, Director, Heron Shadow (Yaqui/Irish)

What is our proper role as human beings? Control?

or

Relationship? Tending and stewardship Maintaining the balance

"This is how the land looks when it's not being tended properly."

--Redbird Willie, Stewardship Coordinator, Heron Shadow (Pomo, Paiute, Wintu and Wailaki)

Survey line reported as "Covered with chemizal" in 1870

about 6-7 generations ago

VEGETATION DATA Historical Record

Sonoma-Napa Study Area, c. 1872

Sonoma-Napa Study Area, 1932

Sonoma-Napa Study Area, 1993

Sonoma-Napa Study Area, 2013/16

Sonoma-Napa Study Area, Vegetation Lifeforms

Sonoma-West Study Area, Vegetation Lifeforms

FIRE DATA Historical Record

SONOMA-NAPA STUDY AREA FIRE HISTORY

Documented Fires: 1870 - 2020

Fires, % of Study Area

SONOMA WEST STUDY AREA FIRE HISTORY

Documented Fires: 1902 -2020

Fires, % of Study Area

1	16%
2	19 %
3	8%
4	4%
5	3%

Frequent Burn Zone (FBZ) 3-5 Fires

No documented burn: 50%

Average # Fires: 0-1

INTEGRATION & FIRE DATA

POST-FIRE REVEGETATION SONOMA WEST FREQUENT BURN ZONE (FBZ)

POST-FIRE REVEGETATION SONOMA WEST FREQUENT BURN ZONE (FBZ)

POST-FIRE REVEGETATION SONOMA WEST FREQUENT BURN ZONE (FBZ)

Figure 34. Sonoma West FBZ Lifeform Transitions 6-54 Years Post Fire

POST-FIRE REVEGETATION SONOMA-NAPA FREQUENT BURN ZONE (FBZ)

POST-FIRE REVEGETATION SONOMA-NAPA FREQUENT BURN ZONE (FBZ)

29 years post fire 1993

POST-FIRE REVEGETATION SONOMA-NAPA FREQUENT BURN ZONE (FBZ)

49 years post fire 2013

50 YEARS Post-fire

1964 >> 2014

Secret Pasture

3 YEARS Pre-Fire

2014 << 2017

Secret Pasture

1830s cultural burning (est.) (1936)

"We had a fire thirty years ago [1964], burned that whole ridge down to Sonoma. The second year the grass is there, fourth year the brush is back.

...it's pretty quick." —Bill Basileu, 2000

Photos from Glen Oaks Ranch, Spring 2018.
6 months after the Nunns Fire. (Sonoma-Napa Study Area)

Fire \rightarrow Shrub \rightarrow Forest \rightarrow Fire Cycle

- "The **Douglas fir** timber they say **has always encroached on the open prairies** and crowded out the other timber. They have **continuously burned it** and have done all they could to keep it from covering all the open lands.
- "Our legends tell when they arrived in the Klamath River country that **there were thousands of acres of prairie lands, and** with all the burning that they could do, **the country has been growing up to timber more and more**."

--Lucy Thompson, 1916

IS THERE A TIPPING POINT FOR CATASTROPHIC FIRE?

A small change in conditions which leads to a large change in the outcome?

Woodland Cover vs. Fire Size (> 500 acres) Sonoma-Napa, 1936 - 2017

Woodland Cover vs. Fire Size Sonoma West FBZ: 1929-2020

Possible Tipping Points

"30 - 30 - 30"

= 'extreme fire behavior'

Wind-driven vs. Fuel-driven Phases.

'Sonoma Complex Fires' October 2017

	Wind-driven	Fuel-driven	TOTAL
	Phase	Phase	
Nunns Fire	23%	77%	100%
	12,586 acres	42,260 acres	54,846 acres
Tubbs Fire	68%	32%	100%
	24,740 acres	11,748 acres	36,488 acres
TOTAL	41%	59%	100%
	37,326 acres	54,008 acres	91,334 acres

Estimated Woodland Cover on the Eve of Catastrophic Fires

Within perimeter in 1993:

GLASS, 2020:	76%	62%
WAHLBRIDGE, 2020:	86%	72%
KINCAID, 2019:	58%	45%
NUNNS, 2017	69%	57%
TUBBS, 2017	66%	54%
VALLEY, 2015	88%	79%

The relationship between woodland cover and fire size suggests a tipping point for very large, potentially catastrophic fires at around 60 – 75 % woodland cover.

A few takeaways

- Vegetation patterns are dynamic and repeat over time Woodland and shrub proportions shift rapidly
- The fastest vegetation changes occur in the most fire-prone places
- Douglas fir has vastly expanded in area and elevation range
- A possible tipping point for catastrophic fires at ~60% woodland cover

In appreciation, (a very incomplete list):

INDIVIDUALS

120+ General Land Office surveyors & assistants Alfred Wieslander & Vegetation Type Map teams Amber Manfree Clint McKay **Danny Franco** David Ackerly Edward Redbird Willie Jeanne Wirka Jim Thorne Judy Talaugon Kim Batchelder Lisa Micheli Journalists (many) Mark Tukman Monica Delmartini Morgan Gray Penny Sirota Rand Evett Sara Moncada Sasha Berleman Sherry Adams Soil-Veg surveyors & cartographers Steve Barnhart Steven Swain Tosha Comendant

Thorne Environmental Landscape Analysis

INSTITUTIONS & ORGANIZATIONS

Audubon Canyon Ranch Bureau of Land Management California Department of Fish & Wildlife County of Sonoma Golden Gate National Parks Conservancy Heron Shadow Pepperwood Preserve Sonoma County Forest Conservation Working Group Sonoma Ecology Center U.S. Forest Service U.S. Soil Service University of California, Berkeley University of California, Davis

How does the land look when it's well tended?

Arthur Dawson, <u>baseline@vom.com</u> (707) 996-9967

55%

60%

% Woodland = a Possible Tipping Point for Catastrophic Fire

"Percolation theory can provide new insights into fire prevention measures that may ultimately help to control the spread of wildfires across the landscape."

Duane et. al. 2021. "Forest connectivity percolation thresholds for fire spread under different weather conditions." *Forest Ecology and Management*

POST-DISTURBANCE VEGETATION CHANGE Long-term Annual Averages

Woodland	<u>Shrub</u>	
	Woodland	Shrub
SONOMA WEST FBZ	+0.9%	-0.8%
SONOMA-NAPA FBZ	+1.3%	-1.5%
SONOMA WEST LOGGING	+0.3%	0%
LAKE FBZ	+0.8%	-0.7%
NAPA FBZ	+0.04%	+0.04%

"[the hills] were soon to be burned of the long grass by the Indians we met . . . <u>the</u> place is bare of thick woods."

Father Jose Altimira, 1823

CALFIRE PERIMETER MAPS:1940s - 2020

NEWSPAPERS & OTHER NARRATIVES: 1870s – 1940s

COUNTY MAPS: 1870s – 1930s

CONFIDENCE LEVELS: High, Medium, Low for Location & Extent for each mapped fire

c. 1872

2013/2016

2013/2016

What did the Douglas fir replace?

Increased:

2x in 20 years 7x in 80 years 13x in 140 years

2013/2016

Glass Fire Impacts

- Human community impacts
- Extensive tree mortality in Douglas-fir dominated areas
- Ladder-fuel-driven mortality
- Compounded stress due to drought
- Invasive species response

Percolation Theory

"The risk of catastrophic fire does not increase in a linear relationship with the density of the forest. Instead there is a tipping point at about 59% density."

Relationship of Time Since Large Fire (>10% of area) to Fire Size & Woodland Cover SONOMA-NAPA 1936 - 2017

•••••• Expon. (FIRE SIZE: % of Area) ••••• Linear (% WOODLAND COVER)

- Tipping points are **not easily predictable**.
- Once triggered, there is no way to reverse them.
- Events that occur when a system passes through a tipping point are usually dramatic, proceed at a high rate, and have no forewarning.
- Understanding the actual causes behind tipping points is important for designing preventive measures.

Adapted from: 'Growth, Delays and Tipping Points' by Mark Fedkin, College of Earth and Mineral Sciences, Pennsylvania State University