

Kenia Gomez¹, Tonia Brito-Bersi¹, Justin C. Luong¹ ¹Forestry, Fire and Rangeland Management California State Polytechnic University, Humboldt

Background

- Pleuropogon hooverianus or North Coast Semaphore Grass is a perennial grass endemic to Northern California.
- The Mendocino County Resource Conservation District (MCRCD) is trying to mitigate future population loss
- Annual Biological monitoring reports from MCRCD noted that the woody debris could have altered the hydrology of the site and also served as a refuge against cattle grazing (Bradley et al 2021).
- Perennial grasses vary in their dehydration tolerance and growth rates and productivity, (Balachowski et al. 2016).

Figure 1. P. hooverianus seedlings in greenhouse.

Research Questions and Hypothesis

- As drought regimes become an increasing problem for California ecosystems, how will drought responses in endemic grass species inform land management decisions?
- Does woody debris mitigate the impacts of drought on *P*. hooverianus?
- We hypothesize that woody debris will mitigate the impacts of drought.

- debris
- Loik, 2022).
- Licor device

measurements

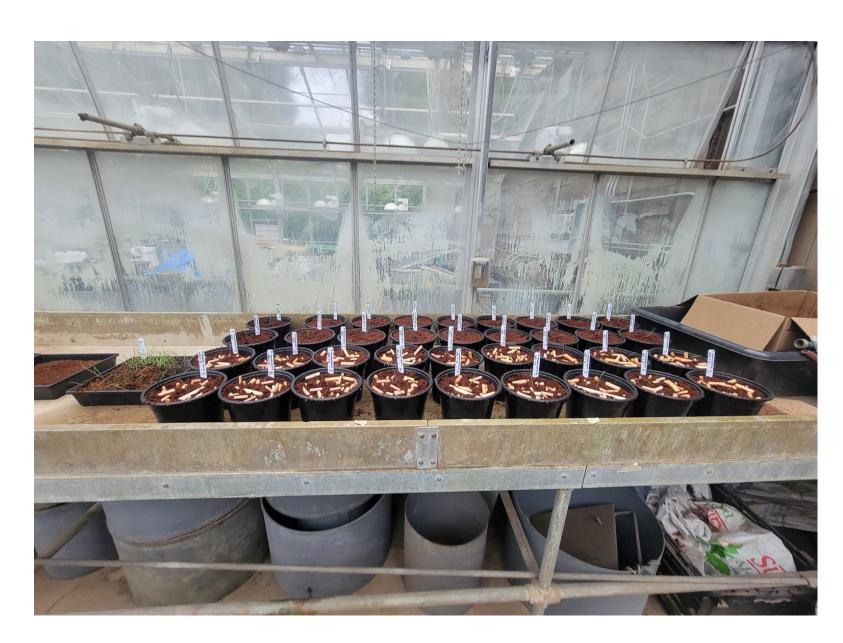


Figure 3. Plants with wooden dowels on surface used to emulate woody debris.

Assessing the impacts of drought and woody debris on Pleuropogon hooverianus development

Methodology

• We used seeds from wild collected Pleuropogon hooverianus, from the MCRCD.

 Plants were grown in gallon pots (n=32) and divided into four treatments: 1) control, 2) woody debris, 3) drought, 4) woody debris x drought.

• Wooden dowels were used to simulate woody

• Following seven weeks of watering, an episodic drought procedure was adopted from Duan et. al (2014). Drought stress was induced by withholding water until a minimal stomatal conductance value was reached (Luong and

Stomatal conductance was measured using a

• Functional traits measured includied plant height, biomass, specific leaf area (SLA), and leaf dry matter content (LDMC)

• Our work was approved through CDFW Permit No. 2081(a)-19-006-RP

Figure 2. Licor data collection and soil moisture

Table 1. Results of Two-Way anova analysis

Trait	Treatment	f-value	p-value
Relative growth rate	Drought	7.81	0.01
	Woody Debris	0.09	0.77
	Drought X Woody Debris	0.03	0.85
Leaf dry matter	Drought	1.21	0.28
	Woody Debris	0.00	0.96
content	Drought X Woody Debris	10.59	0.0036
SLA	Drought	0.04	0.85
	Woody Debris	0.05	0.83
	Drought X Woody Debris	4.04	0.06
Lobedness	Drought	2.01	0.17
	Woody Debris	3.28	0.08
	Drought X Woody Debris	3.38	0.08
Live-green biomass	Drought	8.42	0.01
	Woody Debris	1.36	0.25
	Drought X Woody Debris	0.35	0.56
Standing dead biomass	Drought	6.69	0.02
	Woody Debris	1.44	0.24
	Drought X Woody Debris	0.23	0.64

- Woody (Table 1).
- standing dead biomass (Fig. 6).
- The interaction between woody debris and drought resulted in lower leaf dry matter content (Fig. 4).

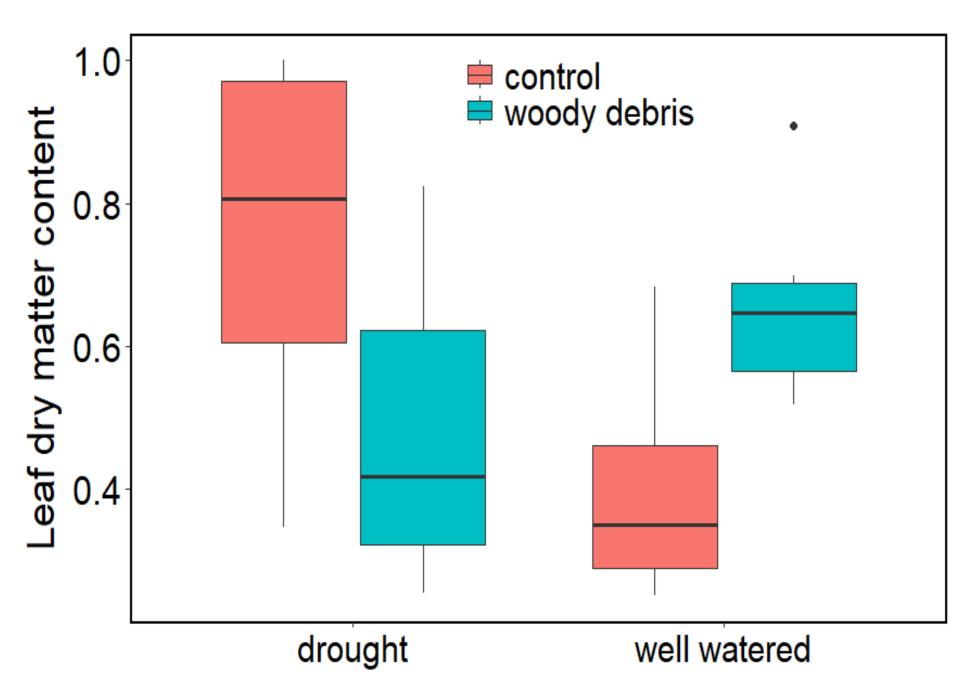


Figure 4. Functional trait - Leaf dry matter content

Results

affect *P*. not hooverianus functional traits or biomass

• Plants in the drought treatment had lower relative growth rate and live-green biomass (Fig.5). They also had increased

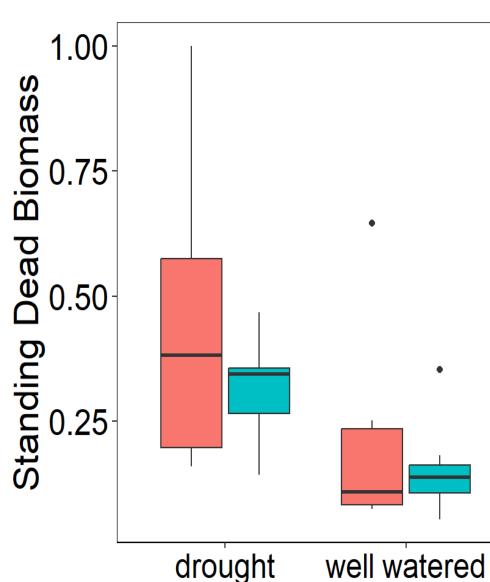


Figure 6. Functional Trait- Standing Dead Biomass

Implications

- Plants in the drought treatment exhibited traits consistent with drought adaptations.
- Woody debris alone did not impact the development of *P. hooverianus*
- The interaction of woody debris and drought suggests that plants in this treatment prioritized resource acquisition.
- Woody debris may initially buffer drought effects could reduce long-term drought resilience by altering resource use.

Acknowledgements

Special thanks to Chris Bartow from MCRCD, California Bountiful Foundation, California Native Grasslands Association, and students in the Luong lab at Cal Poly Humboldt: Logan Holey, Ty Wilkey-Burrell, Jordan Freitas, Trinity Edwards, Hazel Goode, Elena Bewick, Sage Brislen, Max Shea, and Ashley Gutierrez-Olvera.

🛑 control woody debris

e control

woody debris

California **Native** Grasslands Association